Как стать автором
Обновить
0
0

Пользователь

Отправить сообщение

1-я лабораторная работа программы Data Engineer

Время на прочтение7 мин
Количество просмотров14K

Как говорится, никогда такого не было, и вот опять. Мы подумали и решили выложить в свободный доступ первую лабораторную работу нашей новой программы Data Engineer. Бесплатно. Без смс.


Чуть ранее мы писали, зачем вообще стоит присмотреться к этой профессии. Недавно взяли интервью у одного из таких специалистов, и по совместительству, нашего преподавателя.



Так вот. Потенциально каждый самостоятельно может пройти эту лабу и почувствовать себя немножко этим дата инженером. Для этого будет все, что требуется.


А делать в этой лабе мы будем следующее.


  1. Зарегимся на облачном сервисе.
  2. Поднимем на нем 4 виртуальных машины.
  3. Развернем кластер при помощи Ambari.
  4. Поднимем сайт на nginx на одной из виртуалок.
  5. Добавим специальный javascript на каждую страницу этого сайта.
  6. Соберем кликстрим на HDFS.
  7. Соберем его же в Kafka.
Читать дальше →
Всего голосов 11: ↑8 и ↓3+5
Комментарии4

Apache Kafka: обзор

Время на прочтение12 мин
Количество просмотров385K
Привет, Хабр!

Сегодня мы предлагаем вам сравнительно краткую, но при этом толковую и информативную статью об устройстве и вариантах применения Apache Kafka. Рассчитываем перевести и выпустить книгу Нии Нархид (Neha Narkhede) et. al до конца лета.


Приятного чтения!
Читать дальше →
Всего голосов 36: ↑36 и ↓0+36
Комментарии19

RabbitMQ против Kafka: два разных подхода к обмену сообщениями

Время на прочтение18 мин
Количество просмотров329K

В прошлых двух статьях мы рассказывали об IIoT — индустриальном интернете вещей — строили архитектуру, чтобы принимать данные от сенсоров, паяли сами сенсоры. Краеугольным камнем архитектур IIoT да и вообще любых архитектур работающих с BigData является потоковая обработка данных. В ее основе лежит концепция передачи сообщений и очередей. Стандартом работы с рассылкой сообщений сейчас стала Apache Kafka. Однако, для того, чтобы разобраться в ее преимуществах (и понять ее недостатки) было бы хорошо разобраться в основах работы систем очередей в целом, механизмах их работы, шаблонах использования и основной функциональности.



Мы нашли отличную серию статей, которая сравнивает функциональность Apache Kafka и другого (незаслуженно игнорируемого) гиганта среди систем очередей — RabbitMQ. Эту серию статей мы перевели, снабдили своими комментариями и дополнили. Хотя серия и написана в декабре 2017 года, мир систем обмена сообщениями (и особенно Apache Kafka) меняется так быстро, что уже к лету 2018-го года некоторые вещи изменились.

Читать дальше →
Всего голосов 87: ↑82 и ↓5+77
Комментарии42

Архитектура хранения данных в Facetz.DCA

Время на прочтение5 мин
Количество просмотров6.2K
В цикле статей «BigData от А до Я» мы рассмотрели один из наиболее часто используемых технологических стеков для работы с большими данными Apache Hadoop и привели примеры его использования в продуктах DCA. Теперь мы расскажем, как выглядит архитектура хранения данных в Facetz.DCA.


Читать дальше →
Всего голосов 10: ↑10 и ↓0+10
Комментарии2

Распределенное выполнение Python-задач с использованием Apache Mesos. Опыт Яндекса

Время на прочтение5 мин
Количество просмотров20K

Подготовка релиза картографических данных включают в себя запуск массовой обработки данных. Некоторые задачи хорошо ложатся на идеологию Map-Reduce. В этом случае задача инфраструктуры традиционно решается использованием Hadoop или YT


В реальности часть задач таковы, что разбиение их на маленькие подзадачи невозможно, или нецелесообразно (из-за наличия существующего решения и дорогой разработки, например). Для этого мы в Яндекс.Картах разработали и используем свою систему планирования и выполнения взаимосвязанных задач. Одним из элементов такой системы является планировщик, запускающий задачи на кластере с учетом доступных ресурсов.
Workflow Graph


Эта статья о том как мы решили эту задачу с использованием Apache Mesos.

Читать дальше →
Всего голосов 61: ↑60 и ↓1+59
Комментарии16

Big Data от A до Я. Часть 5.2: Продвинутые возможности hive

Время на прочтение7 мин
Количество просмотров26K
Привет, Хабр! В этой статье мы продолжим рассматривать возможности hive — движка, транслирующего SQL-like запросы в MapReduce задачи.

В предыдущей статье мы рассмотрели базовые возможности hive, такие как создание таблиц, загрузка данных, выполнение простых SELECT-запросов. Теперь поговорим о продвинутых возможностях, которые позволят выжимать максимум из Hive.


Читать дальше →
Всего голосов 20: ↑18 и ↓2+16
Комментарии1

Эволюция разработки в Badoo

Время на прочтение1 мин
Количество просмотров19K
Как устроен процесс организации разработки в крупном интернет-проекте на всех этапах его роста? Что происходит, когда из стартапа компания перерастает в проект с более чем 190 миллионами пользователей.

В прошлом году на конференции Whalerider Алексей fisher Рыбак рассказывал о том:

  • как у нас Badoo сейчас устроена разработка;
  • как в процессе развития проекта её перестраивали;
  • какие проблемы решали;
  • как преодолевали кризисы роста;
  • на какие грабли наступали.

В секции вопросов есть интересная информация о том, как в Badoo устроена система мотивации и бонусов.
Сейчас у нас появилось видео и мы хотим поделиться им с вами.



Всего голосов 73: ↑64 и ↓9+55
Комментарии18

Как нам помог Docker в написании тестов

Время на прочтение4 мин
Количество просмотров13K
Чтобы показывать вам рекламу — мы в GetIntent должны быть уверены в устойчивой и безотказной работе нашей рекламной платформы. Надежность системы складывается из многих компонентов: тип используемого железа, системная/сетевая конфигурация и архитектура приложения. Внесение изменений в достаточно сложные, распределенные приложения всегда несет в себе риск.
Разработчики со своей стороны пытаются минимизировать эти риски и пишут тесты: unit и интеграционные. Написание unit тестов обычно не составляет каких-либо трудностей. С интеграционными тестами, в зависимости от их изощренности, ситуация сложнее.


Читать дальше →
Всего голосов 15: ↑14 и ↓1+13
Комментарии12

Big Data от A до Я. Часть 5.1: Hive — SQL-движок над MapReduce

Время на прочтение9 мин
Количество просмотров96K
Привет, Хабр! Мы продолжаем наш цикл статьей, посвященный инструментам и методам анализа данных. Следующие 2 статьи нашего цикла будут посвящены Hive — инструменту для любителей SQL. В предыдущих статьях мы рассматривали парадигму MapReduce, и приемы и стратегии работы с ней. Возможно многим читателям некоторые решения задач при помощи MapReduce показались несколько громоздкими. Действительно, спустя почти 50 лет после изобретения SQL,  кажется довольно странным писать больше одной строчки кода для решения задач вроде «посчитай мне сумму транзакций в разбивке по регионам».

С другой стороны, классические СУБД, такие как Postgres, MySQL или Oracle не имеют такой гибкости в масштабировании при обработке больших массивов данных и при достижении объема большего дальнейшая поддержка становится большой головоной болью.



Собственно, Apache Hive был придуман для того чтобы объединить два этих достоинства:

  • Масштабируемость MapReduce
  • Удобство использования SQL для выборок из данных.

Под катом мы расскажем каким образом это достигается, каким образом начать работать с Hive, и какие есть ограничения на его применения.
Читать дальше →
Всего голосов 17: ↑15 и ↓2+13
Комментарии1

Flume — управляем потоками данных. Часть 2

Время на прочтение23 мин
Количество просмотров14K
Привет, Хабр! Мы продолжаем цикл статей, посвященный Apache Flume. В предыдущей части мы поверхностно рассмотрели этот инструмент, разобрались с тем, как его настраивать и запускать. В этот раз статья будет посвящена ключевым компонентам Flume, с помощью которых не страшно манипулировать уже настоящими данными.

Читать дальше →
Всего голосов 32: ↑31 и ↓1+30
Комментарии12

Flume — управляем потоками данных. Часть 1

Время на прочтение11 мин
Количество просмотров34K
Привет, Хабр! В этом цикле статей я планирую рассказать о том, как можно организовать сбор и передачу данных с помощью одного из инструментов Hadoop — Apache Flume.

Читать дальше →
Всего голосов 19: ↑18 и ↓1+17
Комментарии11

Рекурентная нейронная сеть в 10 строчек кода оценила отзывы зрителей нового эпизода “Звездных войн”

Время на прочтение11 мин
Количество просмотров160K
Hello, Habr! Недавно мы получили от “Известий” заказ на проведение исследования общественного мнения по поводу фильма «Звёздные войны: Пробуждение Силы», премьера которого состоялась 17 декабря. Для этого мы решили провести анализ тональности российского сегмента Twitter по нескольким релевантным хэштегам. Результата от нас ждали всего через 3 дня (и это в самом конце года!), поэтому нам нужен был очень быстрый способ. В интернете мы нашли несколько подобных онлайн-сервисов (среди которых sentiment140 и tweet_viz), но оказалось, что они не работают с русским языком и по каким-то причинам анализируют только маленький процент твитов. Нам помог бы сервис AlchemyAPI, но ограничение в 1000 запросов в сутки нас также не устраивало. Тогда мы решили сделать свой анализатор тональности с блэк-джеком и всем остальным, создав простенькую рекурентную нейронную сеть с памятью. Результаты нашего исследования были использованы в статье “Известий”, опубликованной 3 января.



В этой статье я немного расскажу о такого рода сетях и познакомлю с парой классных инструментов для домашних экспериментов, которые позволят строить нейронные сети любой сложности в несколько строк кода даже школьникам. Добро пожаловать под кат.
Читать дальше →
Всего голосов 82: ↑75 и ↓7+68
Комментарии48

Оптимизация гиперпараметров в Vowpal Wabbit с помощью нового модуля vw-hyperopt

Время на прочтение8 мин
Количество просмотров22K
Привет, Хабр! В этой статье речь пойдет о таком не очень приятном аспекте машинного обучения, как оптимизация гиперпараметров. Две недели назад в очень известный и полезный проект Vowpal Wabbit был влит модуль vw-hyperopt.py, умеющий находить хорошие конфигурации гиперпараметров моделей Vowpal Wabbit в пространствах большой размерности. Модуль был разработан внутри DCA (Data-Centric Alliance).


Для поиска хороших конфигураций vw-hyperopt использует алгоритмы из питоновской библиотеки Hyperopt и может оптимизировать гиперпараметры адаптивно с помощью метода Tree-Structured Parzen Estimators (TPE). Это позволяет находить лучшие оптимумы, чем простой grid search, при равном количестве итераций.

Эта статья будет интересна всем, кто имеет дело с Vowpal Wabbit, и особенно тем, кто досадовал на отсутствие в исходном коде способов тюнинга многочисленных ручек моделей, и либо тюнил их вручную, либо кодил оптимизацию самостоятельно.
Читать дальше →
Всего голосов 24: ↑22 и ↓2+20
Комментарии6

Big data от А до Я. Часть 3: Приемы и стратегии разработки MapReduce-приложений

Время на прочтение7 мин
Количество просмотров84K
Привет, Хабр! В предыдущих статьях мы описали парадигму MapReduce, а также показали как на практике реализовать и выполнить MapReduce-приложение на стеке Hadoop. Пришла пора описать различные приёмы, которые позволяют эффективно использовать MapReduce для решения практических задач, а также показать некоторые особенности Hadoop, которые позволяют упростить разработку или существенно ускорить выполнение MapReduce-задачи на кластере.


Читать дальше →
Всего голосов 25: ↑24 и ↓1+23
Комментарии5

Big Data от А до Я. Часть 2: Hadoop

Время на прочтение9 мин
Количество просмотров231K
Привет, Хабр! В предыдущей статье мы рассмотрели парадигму параллельных вычислений MapReduce. В этой статье мы перейдём от теории к практике и рассмотрим Hadoop – мощный инструментарий для работы с большими данными от Apache foundation.

В статье описано, какие инструменты и средства включает в себя Hadoop, каким образом установить Hadoop у себя, приведены инструкции и примеры разработки MapReduce-программ под Hadoop.


Читать дальше →
Всего голосов 44: ↑38 и ↓6+32
Комментарии8

Кластеризация графов и поиск сообществ. Часть 2: k-medoids и модификации

Время на прочтение11 мин
Количество просмотров24K
image Привет, Хабр! В этой части мы опишем вам алгоритм, с помощью которого были получены цвета на графах из первой части. В основе алгоритма лежит k-medoids — довольно простой и прозрачный метод. Он представляет собой вариант популярного k-means, про который наверняка большинство из вас уже имеет представление.

В отличие от k-means, в k-medoids в качестве центроидов может выступать не любая точка, а только какие-то из имеющихся наблюдений. Так как в графе между вершинами расстояние определить можно, k-medoids годится для кластеризации графа. Главная проблема этого метода — необходимость явного задания числа кластеров, то есть это не выделение сообществ (сommunity detection), а оптимальное разбиение на заданное количество частей (graph partitioning).

С этим можно бороться двумя путями:
Читать дальше →
Всего голосов 29: ↑27 и ↓2+25
Комментарии4

Кластеризация графов и поиск сообществ. Часть 1: введение, обзор инструментов и Волосяные Шары

Время на прочтение10 мин
Количество просмотров48K
Привет, Хабр! В нашей работе часто возникает потребность в выделении сообществ (кластеров) разных объектов: пользователей, сайтов, продуктовых страниц интернет-магазинов. Польза от такой информации весьма многогранна – вот лишь несколько областей практического применения качественных кластеров:

  1. Выделение сегментов пользователей для проведения таргетированных рекламных кампаний.
  2. Использование кластеров в качестве предикторов («фичей») в персональных рекомендациях (в content-based методах или как дополнительная информация в коллаборативной фильтрации).
  3. Снижение размерности в любой задаче машинного обучения, где в качестве фичей выступают страницы или домены, посещенные пользователем.
  4. Сличение товарных URL между различными интернет-магазинами с целью выявления среди них групп, соответствующих одному и тому же товару.
  5. Компактная визуализация — человеку будет проще воспринимать структуру данных.

С точки зрения машинного обучения получение подобных связанных групп выглядит как типичная задача кластеризации. Однако не всегда нам бывают легко доступны фичи наблюдений, в пространстве которых можно было бы искать кластеры. Контентые или семантические фичи достаточно трудоемки в получении, как и интеграция разных источников данных, откуда эти фичи можно было бы достать. Зато у нас есть DMP под названием Facetz.DCA, где на поверхности лежат факты посещений пользователями страниц. Из них легко получить количество посещений сайтов, как каждого в отдельности, так и совместных посещений для каждой пары сайтов. Этой информации уже достаточно для построения графов веб-доменов или продуктовых страниц. Теперь задачу кластеризации можно сформулировать как задачу выделения сообществ в полученных графах.
Читать дальше →
Всего голосов 38: ↑36 и ↓2+34
Комментарии17

Иерархическая классификация сайтов на Python

Время на прочтение8 мин
Количество просмотров27K
Привет, Хабр! Как упоминалось в прошлой статье, немаловажной частью нашей работы является сегментация пользователей. Как же мы это делаем? Наша система видит пользователей как уникальные идентификаторы cookies, которые им присваиваем мы или наши поставщики данных. Выглядит этот id, например, так:

42bcfae8-2ecc-438f-9e0b-841575de7479

Эти номера выступают ключами в различных таблицах, но первоначальным value является, в первую очередь, URL страниц, на которых данная кука была загружена, поисковые запросы, а также иногда некоторая дополнительная информация, которую даёт поставщик – IP-адрес, timestamp, информация о клиенте и прочее. Эти данные довольно неоднородные, поэтому наибольшую ценность для сегментации представляет именно URL. Создавая новый сегмент, аналитик указывает некоторый список адресов, и если какая-то кука засветится на одной из этих страничек, то она попадает в соответствующий сегмент. Получается, что чуть ли не 90% рабочего времени таких аналитиков уходит на то, чтобы подобрать подходящий набор урлов – в результате кропотливой работы с поисковиками, Yandex.Wordstat и другими инструментами.
logo
Получив таким образом более тысячи сегментов, мы поняли, что этот процесс нужно максимально автоматизировать и упростить, при этом иметь возможность мониторинга качества алгоритмов и предоставить аналитикам удобный интерфейс для работы с новым инструментом. Под катом я расскажу, как мы решаем эти задачи.
Читать дальше →
Всего голосов 36: ↑36 и ↓0+36
Комментарии18

Потоковая обработка данных при помощи Akka

Время на прочтение5 мин
Количество просмотров40K
Привет, Хабр! Все привыкли ассоциировать обработку больших данных с Hadoop (или Spark), которые реализуют парадигму MapReduce (или его расширения). В этой статье я расскажу о недостатках MapReduce, о том, почему мы приняли решение отказываться от MapReduce, и как мы приспособили Akka + Akka Cluster на замену MapReduce.


Читать дальше →
Всего голосов 47: ↑44 и ↓3+41
Комментарии50

12 игр, которые обучают детей программированию

Время на прочтение10 мин
Количество просмотров288K


Программирование сейчас очень популярно. По всему миру 36 миллионов детей принимают участие в мероприятиях движения «Час программирования». Цель этих мероприятий – помочь детям стать активными, а не пассивными пользователями технологий, а также получить знания, которые в будущем могут помочь устроиться на хорошую работу в нашем все более и более техническом мире.

Даже если ваши дети не хотят в будущем зарабатывать на жизнь программированием, базовое понимание принципов программирования развивает мышление и, в дальнейшем, ребенок лучше справляется с решением возникающих задач. Билл Гейтс когда-то сказал: «Если вы учитесь создавать программы, это развивает ваш разум, помогает вам лучше мыслить и создает образ восприятия вещей. В целом, я думаю, что человеку это будет полезно вне зависимости от сферы его деятельности».

Такие платформы, как Scratch и Alice позволяют детям (и взрослым) создавать собственные игры и анимации, используя упрощенные методы программирования. Однако не всем детям это интересно. И вот для таких детей существует множество игр, которые обучают базовым принципам программирования в веселой и доступной форме.

Читать дальше →
Всего голосов 61: ↑58 и ↓3+55
Комментарии32
1
23 ...

Информация

В рейтинге
Не участвует
Откуда
Москва и Московская обл., Россия
Работает в
Дата рождения
Зарегистрирован
Активность