Знания как код: архитектурный репозиторий в git на базе PlantUML

Привет, Хабр! Меня зовут Максим Приходский, я архитектор R-Style Softlab и сегодня хочу рассказать вам о проекте создания архитектурного репозитория в git на базе PlantUML.
Пользователь

Привет, Хабр! Меня зовут Максим Приходский, я архитектор R-Style Softlab и сегодня хочу рассказать вам о проекте создания архитектурного репозитория в git на базе PlantUML.

Привет всем! Меня зовут Юля, я фронтенд-разработчик, наставник на курсах по JS и React и организатор профессионального сообщества Tbilisi JS. В Практикуме я помогаю студентам на курсе «React-разработчик».
За время работы в разных компаниях и над разными проектами я поняла, что Git — это не только (и не столько!) знание самой технологии и конкретных команд, но и определённая культура взаимодействия, практики, подходы, договорённости. Всё это помогает участникам команды лучше понимать друг друга и работать быстрее и чётче.
Поговорим как раз об этом — о том, что формирует культуру работы с Git: начнём с конвенций именования коммитов и закончим практиками работы в пуллреквесте. В конце статьи я поделюсь полезными ссылками на интерактивные обучалки, шпаргалки и гайды.

Доступ к единой истории операций — функция, которую сегодня ожидают видеть пользователи любого современного интернет-банкинга. В приложениях Газпромбанка функция существует уже много лет, но некоторое время назад мы решили существенно её переработать. В этой статье я расскажу, что мы поменяли, как и почему мы решили это сделать, а также почему мы гордимся результатом.
Сразу оговорюсь, что не буду углубляться в технические детали и остановлюсь на подходе, который мы решили использовать. Иначе есть риск что статья превратится в километровое полотнище. А если возникнут вопросы, то либо отвечу на них в комментах, либо аккумулирую и попробую разобрать в следующей статье.
Привет! Меня зовут Александр Каленюк, и я крепко подсел на C++. Пишу на C++ 18 лет кряду, и все эти годы отчаянно пытаюсь избавиться от этой разрушительной зависимости.
Всё началось в конце 2005 года, когда мне довелось писать движок для симуляции 3D-пространства. В этом движке было буквально всё, чем язык C++ мог похвастаться в 2005 году. Трёхзвёздочные указатели, восьмиуровневые зависимости, C-подобные макросы повсюду. Кое-где – вкрапления ассемблера. Итераторы в стиле Степанова и мета-код в стиле Александреску. В общем, всё. Кроме ответа на самый важный вопрос: зачем?

Юбилейная - 10-я - конференция PGConf.Russia опередила юбилей компании (Postgres Professional исполнилось 9 лет). А самая первая - PGConf.Russia 2015 - даже опередила саму компанию: конференция прошла в феврале, а официальный день рождения Postgres Professional 1 апреля 2015.

Меня зовут Дима Синявский, я SRE-инженер в Vi.Tech — это IT-дочка ВсеИнструменты.ру. В этой статье расскажу я вам о том как мы развивались и с нами развивалась наша система логирования. Почему вам нужен Vector.dev + Clickhouse для хранения и когда это выгодно.
Когда компания была маленькой нам хватало и блокнота, чего сейчас уже не скажешь.
У нас 931 000 пайплайнов в месяц, 4 кластера Kubernetes: от 170 до 190 нод в каждом, и 200 ГБ логов ежедневно.

Так получилось что в рамках моей основной деятельности пришла пора сделать сервис для манипуляции с ресурсами СХД для виртуальных машин (ВМ). Они подаются в SAN в виде "LUN" ("Logical Unit Number"). Пока речь шла о десятках .. первых сотнях LUN, хватало моего старого решения (оно изначально про телефонию и блок-схемы, но на самом деле всё равно подо что делать очередной модуль). А потом он рос, рос, и…

В этой статье рассмотрим пять лучших библиотек Python, предназначенных специально для работы с русским языком в контексте NLP. От базовых задач, таких как токенизация и морфологический анализ, до сложных задач обработки и понимания естественного языка.

Привет! Меня зовут Артем. Я работаю Data Scientist'ом в компании МегаФон (платформа для безопасной монетизации данных OneFactor).
В предыдущей статье я поделился материалами для подготовки к этапу по классическому машинному обучению.
В этой статье рассмотрим материалы, которые можно использовать для подготовки к секции по специализированному машинному обучению.

Всем привет! Меня зовут Вадим, я Data Scientist в компании RAFT. Сейчас технологии AI применяются и развиваются во многих сферах деятельности человека, в особенности LLM, про которые уже слышал каждый. В большинстве случаев подобные технологии реализуют на Python, используя различные библиотеки, такие как pytorch, tensorflow, jax. Все они имеют свои преимущества и недостатки. Например, всем известная скорость вычислений.

Четыре года назад ИТ-эксперт Чип Хуэн* проанализировала экосистему ML с открытым исходным кодом. С тех пор многое изменилось, и она вернулась к изучению темы, на этот раз сосредоточившись исключительно на стеке вокруг базовых моделей.
О результатах исследования читайте под катом.
*Обращаем ваше внимание, что позиция автора может не всегда совпадать с мнением МойОфис.
Хотелось бы поделиться опытом создания систем маршрутизации PostgreSQL/PgRouting на карте OpenStreetMap. Речь пойдет о разработке [коммерческих] решений со сложными требованиями, для более простых проектов, вероятно, достаточно обратиться к документации. Насколько мне известно, такие вещи, как полная поддержка односторонних дорог и направлений движения, быстрый роутинг на тысячах адресов (порядка секунд на обычном лаптопе, к примеру, Macbook Pro 13" 2013 года), создание дорожного графа с заданными свойствами, мета-оптимизация маршрутов вообще нигде и никак не рассматриваются. Как обычно, все данные и результаты доступны в моем GitHub репозитории OSM Routing Tricks, который я буду пополнять по мере публикаций.

Небольшой маршрут из 330 адресов на карте OpenStreetMap (время построения около 5 секунд на вышеупомянутом лаптопе). Можно ли за это же время построить маршрут, скажем, из 5000 точек? Да, можно, и об этом мы тоже поговорим (в следующих частях статьи).

В главе 2 я создал простой шаблон для домашней страницы приложения и использовал поддельные объекты в качестве заполнителей для того, чего у меня еще нет, например, пользователей и записей в блоге. В этой главе я собираюсь устранить одно из многих недостатков, которые у меня все еще есть в этом приложении, в частности, как принимать входные данные от пользователей через веб-формы.

Работа с pandas.DataFrame может превратиться в неловкую кучу старого (не очень) доброго спагетти-кода. Я и мои коллеги часто используем эту библиотеку, и хотя мы стараемся придерживаться хороших практик программирования, иногда мы все равно мешаем друг другу, создавая запутанный код.
Я собрала несколько советов и подводных камней, которых следует избегать, чтобы сделать код на pandas чистым. Надеюсь, вам они тоже будут полезны. Также я буду ссылаться на классическую книгу Роберта Мартина «Чистый код: создание, анализ и рефакторинг».

Всем привет! Случались ли у вас ситуации, когда количество DAG’ов в вашем Airflow переваливает за 800 и увеличивается на 10-20 DAG’ов в неделю? Согласен, звучит страшно, чувствуешь себя тем героем из Subway Surfers… А теперь представьте, что эта платформа является единой точкой входа для всех аналитиков из различных команд и DAG’и пишут более 50 различных специалистов. Подкосились ноги, холодный пот и желание уйти из IT?
Не спешите паниковать, под катом я расскажу о том, как контролировать потребление ресурсов DAG’ов Airflow для предупреждения неоптимально написанных DAG’ов и борьбы с ними.
Меня зовут Давид Хоперия, я Data Engineer в департаменте данных Ozon.Fintech и моим основным инструментом является Apache Airflow, поэтому настало время углубиться в детали его работы.

Идея проекта возникла у меня во время работы над проектом поисковика документов. Существует такая библиотека, как Apache Tika, написанная на Java, которая умеет парсить документы различных типов. Чтобы мой поисковик работал, он должен уметь извлекать текст из документов разных типов (PDF, DOC, XLS, HTML, XML, JSON и т. д.). Сам поисковик я писал на Rust. Но, к сожалению, в мире Rust нет библиотеки, которая умела бы парсить документы всех типов.
TL;DR:
— в Rust намного больше достоинств, чем просто скорость и безопасность
— в Rust по умолчанию CDD (compiler-driven development, разработка через компилирование). Это как TDD, только CDD
— Rust — не сложный язык, особенно если не гнаться за максимальной производительностью
В этой статье я бы хотел рассказать:
— почему взгляд на Rust как на "memory safe C" очень сильно сужает область его возможного применения
— почему я смотрю на Rust как на очень удобный в разработке язык высокого уровня, которому просто случайно повезло оказаться невероятно быстрым
— почему разработка на Rust быстрее, чем многие думают
— почему Rust — это один из лучших языков общего назначения

Краткий обзор курса, который я недавно закончил пилить на степике. Курс хардкорный :) В нем необходимо с нуля писать алгоритмы машинного. Наверное это один из лучший способов досконально разобраться в алгоритме.
Мои курсы: Разработка LLM с нуля | Алгоритмы Машинного обучения с нуля

Пара слов обо мне. У меня никогда не было серьезного плана делать свой продукт, открывать под это дело компанию, погружаться в custdev и вот это вот всё. Днем я работал в сеньёр девелопером, по вечерам - делал pet-проекты типа онлайн версии настольной игры или онлайн-редактора пиксель-арта, и все было хорошо.
Но в какой-то момент так совпало, что вопрос с жильем был решен, была накоплена финансовая подушка на пару лет и подвернулся интересный, как мне показалось, проект. Свою лепту также внес мой друг, который вложил в мою голову мысль, что со временем мы стареем, хуже учимся, труднее воспринимаем новую информацию, и чем дальше, тем будет хуже. Так что если я не хочу всю жизнь в найме провести - то вот подходящее время, когда и опыт уже есть, и силы еще есть.
В общем, мы разрабатываем PIM-систему catalog.app, и я оказался ответственным за весь процесс, начиная от общения с клиентами и формирования требований и заканчивая оптимизацией SQL запросов. В этой статье я расскажу, как наша система устроена внутри, и постараюсь обосновать, почему были выбраны именно такие подходы и инструменты, как у нас организован процесс разработки.
У нас нет кубернетеса, кликхауса, реакта, бессерверных вычислений, рэббит эмкью, кафки, кибаны, графаны, дженкинса, ноды, эластика, и много чего ещё нет. Зато есть дотнет последней версии, энтити фреймворк, нгинкс и шваггер. Я постараюсь рассказать, как и почему мы дошли до такой жизни, и жизнь ли это.
Вы не подумайте, все то, что перечислено выше и чего у нас нет, я считаю прекрасными инструментами (кроме ноды, нода ужасна), и со многим когда-то имел дело. Но любая сторонняя зависимость, а особенно инфраструктурная зависимость, имеет свою цену, и я искренне считаю, что на этом этапе развития проекта не все зависимости нам по карману. Возможно, в комментариях будет порция обоснованной критики по выбору технологий, мы постараемся к ней прислушаться.