
Что если можно было бы подключить своё AXI-устройство на FPGA к Linux через PCIe за вечер? В этой статье рассказываю, как написать драйвер для UARTLite через XDMA, собрать свою TTY и начать работать с GPS прямо из терминала!
Что если можно было бы подключить своё AXI-устройство на FPGA к Linux через PCIe за вечер? В этой статье рассказываю, как написать драйвер для UARTLite через XDMA, собрать свою TTY и начать работать с GPS прямо из терминала!
Сколько себя помню, меня всегда привлекали счётчики памяти в Linux: смотришь в условный htop
– в плане потребления CPU вроде всё +/- понятно, а вот память всегда считалась как-то не так, как ты это на первый взгляд ожидаешь, и долгое время у меня было довольно наивное и ошибочное представление о механизмах её работы.
Со временем некоторые вещи прояснялись, приходило понимание, как именно оно работает под капотом (до определённой степени). В какой-то момент возникла рабочая необходимость понять, куда уходит память на реальной системе – и этот случай в очередной раз показал, что местами оно устроено довольно неочевидно, и на этот вопрос не всегда просто дать ответ. Ну а помимо рабочей необходимости у меня дома давно стоит сервер, обвешанный метриками, и всегда хотелось высветить себе их в понятной форме, чтобы потом в реальном времени наблюдать, как ведёт себя система, когда в ней происходят те или иные процессы.
В этой статье я попробую разобрать, как сделать такой мониторинг и как интерпретировать его результаты. Сразу оговорюсь, что никогда не занимался разработкой ядра – вся информация ниже исключительно из личного опыта, поверхностного чтения исходников ядра и обильного гугления. Поэтому не исключено, что где-то могу быть неточным или вовсе неправым, но будем надеяться, что не сильно.
Привет, Хабр! Меня зовут Кирилл Колодяжный, я работаю в YADRO и продолжаю изучать машинное обучение на С++. Я уже писал, как реализовать модели для распознавания лиц на фото и для поиска объекта в пространстве с помощью computer vision. Ссылки на материалы ищите в конце статьи.
Сегодня затрону «математическую» тему и расскажу о реализации сверток: что это за операция и какие есть алгоритмы для вычисления. Приведу простые примеры с кодом, чтобы вы могли опробовать решения.
У статьи будет вторая часть: про особенности реализации одного из этих алгоритмов с использованием CUDA в рамках фреймворка PyTorch и про то, как адаптировать его под свои задачи.
При написании своей VM для RISC-V возникла необходимость в тестировании.
Сначала я пытался писать юнит-тесты самостоятельно, но выходило, что я просто копирую логику из основной.
И по сути тестирую не соответствие спецификации, а соответствие моему пониманию.
Через некоторое время я наткнулся на официальный набор тестов для RISC-V
и решил их использовать.
Это помогло найти несколько багов в моём коде.
Идея статьи родилась после прочтения многочисленных источников в интернете по барьерам и моделям памяти.Так же, был просмотрены соответствующие видео с разъяснением. Много где в целом всё достаточно хорошо разжевано. Статья не претендует на исчерпывающий материал. Скорее, это обзорное описание на тему модели памяти в связке с RISC-V. Не рассчитана на entry level, рекомендуется сперва почитать что нибудь вводное.
Навряд ли кому то необходимо детальное знание внутренней архитектуры процессора на уровне RTL (register-transfer level), как и глубокого понимания принципов модели памяти, согласованности. Да и обычно вся эта информация берется из соответствующей литературе от производителя, других книгах по оптимизации. Предполагаю, что авторы в том или ином виде могу знать более глубокие вещи, чем представлены в открытых источниках. Возможно, они работали в компании производителя (Intel, например), общение, конференции, сообщества.
Но может ли быть источник лучший, чем исходники CPU? Навряд ли. Вы не найдете в открытом доступе исходники процессоров Intel, AMD и любых других. ARM за это денежки получает, продавая права на архитектуру и готовые спроектированные блоки. А вот для RISC-V такой источник есть - исходники полноценного суперскалярного out-of-order процессора от Berkley.
Не так давно был разработан язык Chisel на замену Verilog и аналогов. Он на базе Scala. А, так как это Scala, мы можем использовать IDE и внятную навигацию по исходникам. Но в исходники просто так не пойдешь, сперва надо приобрести необходимые фундаментальные знания, чтобы понимать в целом что такое разработка на уровне RTL. Неплохо бы разобраться с Verilog и с базовыми понятиями - всякие там защелки, регистры, мультиплексоры и тп. Это я и решил сделать и начал с книги “Паттерсон, Хеннесси: Архитектура компьютера и проектирование компьютерных систем”. Она безумно крутая и очень понятная. Затем прочитал несколько книг по FPGA и Verilog и даже купил учебную FPGA плату, но руки до неё так и не дошли. Это позволило сформировать для себя какую то необходимую картину того, как функционирует CPU, как происходит проектирование микроконтроллеров.
Я астрофизик, занимаюсь исследованием астрофизических течений в окрестностях двойных звезд и экзопланет. Тема очень обширная и интересная, но сегодня статья будет немного не об этом, и даже не о том, как, собственно, это делается, а об одной маленькой, как мне казалось, проблеме, которая погрузила меня в пучины программирования, хотя изначально цель моя была от программирования избавиться, по возможности, совсем. А именно - о символьной математике и об упрощении алгебраических выражений.
Привет, Хабр! Меня зовут Илья, я работаю в команде физического дизайна в дивизионе полупроводников YADRO. Проектирую цифровые микросхемы, помогаю с образовательными программами и привлекаю студентов в наше дело. В этой статье я расскажу про разработку современных микросхем с фокусом на этап проектирования топологии, объясню, что такое SoC (System-on-Chip, cистема на кристалле) и как мы проектируем их в нашей команде. А напоследок покажу, где об этом всем можно узнать на собственном опыте.
Шёл 2025 год, а я задался вопросом: «Не пора ли нашей команде выбрать стандарт языка Си, на котором будет вестись основная часть разработки?» С одной стороны кажется, что этот вопрос давно должен быть решён, стандарт языка указан в code style, конечно, после «холиваров», череды обсуждений, обид, проклятий и прочих маленьких трагедий. А если нет? А если нет, то так ли это важно? Что там нового может быть в языке Си? Стоит ли этот вопрос вообще того, чтобы тратить время? В этой заметке поделюсь с уважаемым читателем тем интересным, что я узнал и вспомнил во время неспешного исследования этого вопроса, относительно холодными и тёмными вечерами.
Как отправить робота на автономное патрулирование и научить его «видеть»? Разбираем реальный кейс создания роботизированной системы мониторинга на базе отечественной платформы: выбор оборудования, интеграция ИИ и примеры кода. Делимся опытом, как научить робота собирать данные, обходить препятствия и почему отказались от модной робособаки.
Построение множества Мандельброта — классический пример чрезвычайно параллельной задачи (embarrassingly parallel problem).
На первом курсе я впервые столкнулся с такой проблемой: тогда мы изучали SIMD-инструкции в курсе архитектур вычислительных систем. Эта тема сразу меня увлекла, и я захотел углубиться в дальнейшие оптимизации, но в течение семестра мне не хватало ни времени, ни знаний. Спустя год я решил восполнить этот пробел.
Вначале мы разберем наивную реализацию, поиграемся с интринсиками (intrinsics) и, не теряя переносимости, заставим компилятор генерировать нам SIMD-инструкции. Далее добавим многопоточность и в заключение обесценим все наши старания несколькими строчками на CUDA.
Возможно, эта статья поможет таким же, как я, впервые столкнувшимся с подобными задачами.
ASML возникла в 1984 году как совместное предприятие Philips и ASM, и которое с самого начала рассматривалась как провальный проект. Но сегодня ASML имеет рыночную капитализацию более 300 млрд евро и является одной из самых важных компаний для технологического развития мира. Компании удалось создать, по сути, технологическую монополию в самом передовом оборудовании для производства чипов —литографии в экстремальном ультрафиолетовом диапазоне (EUV) - технологии, необходимой для создания самых современных чипов, с которой не смогла справиться ни одна другая компания в мире...
От аутсайдера-задиры до лидера литографии
В начале 1980-х годов небольшой городок Вельдховен тихо пожинал плоды своего соседа Эйндховена — процветающего промышленного центра благодаря присутствию голландского электронного гиганта Philips. Поскольку Philips продвигал технологические инновации в регионе, его влияние распространялось за пределы Эйндховена, способствуя волновому эффекту промышленной активности и технического опыта, которые достигли Вельдховена.
С самого начала ASML был подразделением, которое многие в материнской компании считали скорее обузой, чем возможностью. Фактически, это был проблемный ребенок Philips — проект, который потратил более десятилетия на попытки проникнуть в фотолитографический бизнес без особого успеха. В Philips шутили, что создание ASML было по сути отложенным увольнением для переведенных в него сотрудников.
Несмотря на внутренний скептицизм, Philips увидела спасение в партнерстве с ASM International , другой голландской компанией по производству оборудования для полупроводников, которая сегодня занимает лидирующие позиции на рынке оборудования для так называемого атомно-слоевого осаждения (ALD) и эпитаксии, используемых в передовом производстве микросхем. В 1984 году ASML была создана как совместное предприятие Philips и ASM со штаб-квартирой в Вельдховене. Поначалу компанию в значительной степени считали неудачной, не имея ни коммерческой жизнеспособности, ни даже надлежащего офиса. Ее первым рабочим пространством был набор деревянных бараков в кампусе Philips в Эйндховене. Моральный дух был низким, многие сотрудники скептически относились к шансам предприятия на успех, рассматривая его скорее как проект, обреченный на провал с самого начала.
У каждого программиста микроконтроллеров с годами кристаллизируется коллекция золотых багов. Некоторые из них весьма эпичные.
Самый типичный баг - это зависание прошивки.
Выявление причин багов и их устранение порой сродни работы детективом. Это проявляется в том, что порой очень трудно выявить причину бага. Сначала разработчик идет по ложному следу, ходит кругами, а в конце-концов выясняется, что причина на самом деле была проста, как солдатский валенок.
В этой заметке я написал про свой опыт работы с CAN шиной. Вы узнаете с какой стороны следует подходить к CAN сети.
Образно выражаясь CAN - это труба для чисел. Можно метафорично сказать, что CAN - это нервная система автомобиля. Именно по САN передаются сигналы от датчиков и к исполнительным механизмам.
На каком языке пишут программы для BIOS? Ответ на этот вопрос кажется очевидным: Си и ассемблер. Да, вот так коротко и просто. Существуют и другие инструменты и языки, но так исторически сложилось, что на такой “низкой” глубине выживают только они. В настоящее время здесь доминируют два основных языка, причем с явным перекосом в одну из сторон. В последние годы наблюдается значительный рост популярности языка Rust, который стал серьезным конкурентом одного из фаворитов. Проникнув в ядро Linux, где ранее никому не удавалось потеснить Си, Rust продолжает расширять свое влияние и на другие сферы разработки. Именно с идеи попробовать и сравнить началось мое путешествие по написанию EFI-утилиты на Rust для BIOS.
Когда мне предстоит начать работу с новым микроконтроллером, я обычно гляжу, а какое у него быстродействие GPIO. Сколько тактов на одну запись уходит по факту. Такая у меня традиция. Было дело, я так выяснил, что китайские клоны STM32 работают с GPIO чуть быстрее, чем оригинал. Для дешёвых контроллеров обычно ничего более интересного такие проверки не выявляют, но традиция есть традиция. Не изменял я ей и при начале освоения CH32x035 на базе RISC-V. И вот для него картинки получились такими интересными, что я решил поделиться ими с общественностью. Не то, чтобы там было что-то революционное, но от привычных мне они точно отличаются.
А ещё я добавлю к ним немного выводов… И нутром чую, что в комментариях мне объяснят, что я понимаю всё неправильно, а на самом деле… Но я буду только рад обоснованным высказываниям. Вместе мы установим истину.
В статье выясним, можно ли с точки зрения стандарта языка C++ тривиальным вызовом push_back продублировать элемент std::vector. Отвечая на простой вопрос, столкнемся с более интересными: что собой представляет внутренний мир вектора, как "протухают" итераторы при реаллокации, какие ограничения добавляют гарантии безопасности относительно исключений...
В одной из предыдущих статей я предложил (в рамках коллективной внутриотраслевой терапии Проклятия знания) членам электротехнических хабов обменяться техническими вопросами. Сформулировать вопросы по своему узкому профилю и попробовать поотвечать на вопросы коллег.
Не всё из предложенного в той статье оказалось реализуемо, но, в общем, на мой субъективный взгляд, эксперимент оказался весьма любопытным :)
Интересуешься визуальной одометрией? В этой статье я сравнил алгоритмы ORB, R2D2, SIFT и их комбинации, реализовав их на Java с OpenCV. Подробно разобрал, как они работают, замерил точность, производительность и наглядно показал, какой алгоритм лучше для беспилотников. Если хочешь узнать больше и посмотреть примеры кода на Java, заглядывай!
Вы, наверное удивитесь, но чтобы написать учебник, надо знать системы сборки из софтверного БигТеха и, как ни странно, старый добрый сишный препроцессор (cpp).
Да, господа... Именно так...
В этой заметке я покажу несколько трюков по работе с LaTeX.
Начинаю выкладывать курс по изучению контроллеров RISC-V на примере GD32VF103 и чуть более мощного CH32V303. Основной упор будет скорее на теорию и технологии, чем на "быстрый старт" и "электронику для домохозяек". То есть ассемблер, регистры и самодельные печатные платы.