В первой части статьи на Habr мы рассмотрели классические подходы к оценке изменений метрики при условии ее стационарности. В этом контексте статистические критерии, применяемые в A/B тестировании, оказались весьма эффективными.
Однако, если существует стабильный тренд, например, среднемесячная аудитория увеличивается из года в год, оценка разницы средних за два смежных периода времени может быть некорректной. В таком случае среднее значение предыдущего периода всегда будет отличаться от среднего постпериода, и это часто может быть не связано с исследуемым функционалом.
Одна из причин — тренд не всегда зависит от действий компании и часто является следствием внешних условий. Например, рост аудитории может быть связан с увеличением благосостояния населения, масштабированием бизнеса или сезонными факторами.
Таким образом, наличие или отсутствие тренда является важным аспектом анализа данных. Рассмотрим несколько успешных и неудачных подходов, которые можно применять для решения этой задачи.