Обновить
125.87

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга
Уровень сложности

Всё, что нам нужно — это генерация

Время на прочтение10 мин
Охват и читатели31K

Применяем ruGPT-3 в популярных задачах и показываем, зачем языковым моделям триллион параметров


С наступлением 2021 в NLP продолжается гонка «больше — лучше», захватывая новые архитектуры. Пальма первенства самой большой языковой модели в 2020 году принадлежала GPT-3 от OpenAI с 175 миллиардами параметров — но недолго. Модель GShard с помощью Mixture-of-Experts повысила планку до 600 миллиардов параметров, а затем и Google Brain заявил о разработке архитектуры Switch Transformer с 1,6 триллионами параметров (и тоже является MoE). Насколько повышение результатов за счет объема полезно для индустрии? Тот же Switch Transformer с его триллионом параметров далеко не на 1 месте в лидербордах.

Огромные языковые модели (Enormous Language Models, теперь это термин, им посвящен отдельный воркшоп конференции ICLR 2021) показывают действительно интересные результаты — не только в традиционных задачах ML, но и в новых сферах применения: генерации всего того, что раньше генерировать без ошибок было нельзя — музыку, изображения попиксельно, программный код и т.д. Из всех традиционных форм NLP-задач — классификация, классификация элементов последовательности, seq2seq, — по сути, у нас остается только одна: seq2seq. С приходом больших языковых моделей все задачи NLP сводятся теперь к форме генерации, при должном качестве этой самой генерации.

Seq2seq — самая «человеческая» форма решения задач: человек использует тот же формат,  отвечая на сообщения в чате, общаясь устно, сортируя имейлы в почте.  

  • Лично нам в SberDevices не терпелось поскорее применить такой формат к различным задачам — поэтому мы открываем доступ к самой большой русскоязычной нейросети ruGPT-3 XL с 1,3 млрд параметров. 

Инженерный запал вылился в кропотливую работу по распараллеливанию обучения, очистке данных и тестированию. Но зато… теперь в open-source модель ruGPT-3 XL с 1,3 млрд параметров!



А также ее публичное API:


Читать дальше →

Честные глаза плагиатора, или еще один взгляд на будущее систем обнаружения заимствований

Время на прочтение7 мин
Охват и читатели5.7K

Развивать систему, созданную 16 лет назад, «конечно, не подвиг, но вообще что-то героическое в этом есть» (с). От пользователей регулярно прилетают вопросы: что будете делать дальше? Каким будет Антиплагиат через несколько лет? Все правильно, все верно – нельзя позволять рутине себя засасывать настолько, чтобы не оставалось времени подумать о далеком…, о жестоком…, ну вы поняли… о будущем.


Действительно, начало весны (отчетность закончилась, а сессия еще не началась) – самое удобное время для стратегических планов. Ну а заодно и для удовлетворения любопытства наших пользователей.


Не могу сказать, что описываю совсем уж ближайшее будущее. Какие-то идеи пока находятся в обработке у наших исследователей, какие-то и вовсе пока еще «варятся в головах». Но тем не менее, описанный ниже сценарий развития системы «Антиплагиат» сейчас наиболее вероятен.
Картинку даю, слегка опережая события. Она имеет непосредственное отношение к теме статьи, но, чтобы обо всем рассказать, нужно чуть больше места.



Кадр из а/ф «Шрек 2» (англ. « Shrek 2»), DreamWorks Pictures, 2004 год


Читать дальше →

Process Mining как эволюция «научного управления» — и наша открытая библиотека для анализа

Время на прочтение8 мин
Охват и читатели18K
Process Mining – это мост между Data Mining и Process Management. Это подход к извлечению, анализу и оптимизации процессов на основе данных из журналов событий (event logs), доступных в информационных системах. Мы разработали и открыли библиотеку, позволяющую быстро и достаточно просто обрабатывать данные информационных систем производства, чтобы находить узкие места и точки неэффективности.

Первой научной теорией, целью которой был анализ и оптимизация рабочих процессов, является «Научное управление». На рубеже XIX – XX веков усилиями американского исследователя Фредерика Тейлора и его единомышленников была создана теория классического менеджмента. Она основывается на положении, что существует «наилучший способ» выполнения каждой конкретной работы, и проблема низкой производительности может быть решена путем использования метода, названного «научным хронометрированием». Суть метода заключается в разделении работы на последовательность элементарных операций, которые хронометрируются и фиксируются при участии рабочих. В итоге это позволяет получить точную информацию о необходимых затратах времени на выполнение той или иной работы.

image

Таким образом, более 120 лет назад таким простым шагом был дан старт научному подходу к исследованию процессов. С развитием общества и технологий эволюционируют и совершенствуются подходы к анализу и оптимизации процессов: происходит переход к «Массовому производству», в основе которого лежит специализация с возможностями оптимизации сборки, компьютеризации и анализа статистки.

Современный Process Mining — это эволюция этого подхода с учётом больших данных.
Читать дальше →

DeepPavlov стал частью Google Summer of Code в 2021 году

Время на прочтение3 мин
Охват и читатели3.5K

В этом году открытая платформа для обработки естественного языка DeepPavlov, разрабатываемая лабораторией нейронных систем и глубокого обучения МФТИ,  впервые стала частью ежегодной программы для молодых разработчиков Google Summer of Code.

Google Summer of Code (GSoC) — это ежегодное событие, проводимое компанией Google для привлечения молодых разработчиков к разработке проектов с открытым исходным кодом в их свободное летнее время. К участию допускаются студенты высших учебных заведений (бакалавриат, магистратура, аспирантура) и колледжей. Это отличная возможность не только развить навыки программирования, но и заработать!

Работать можно в любой организации, которая есть в соответствующем списке на странице Google Summer of Code, но мы предлагаем вам участвовать в рамках сообщества DeepPavlov. И сегодня мы расскажем подробнее о приеме и задачах, которые готовы предложить студентам этим летом. Вместе с вами мы выведем сообщество разработчиков ПО с открытым исходным кодом на новый уровень. 

Читать далее

Мы Опубликовали Качественный, Простой, Доступный и Быстрый Синтез Речи

Время на прочтение9 мин
Охват и читатели73K

fiona


Вторая частьhttps://habr.com/ru/post/563484/


Вокруг темы синтеза речи сейчас много движения: на рынке есть огромное число тулкитов для синтеза, большое число закрытых коммерческих решений за АПИ (как на современных технологиях, так и на более старых, т.е. "говорилки") от условных GAFA компаний, большое количество американских стартапов, пытающихся сделать очередные аудио дипфейки (voice transfer).


Но мы не видели открытых решений, которые бы удовлетворяли одновременно следующим критериям:


  • Приемлемый уровень естественности речи;
  • Большая библиотека готовых голосов на разных языках;
  • Поддержка синтеза как в 16kHz так и в 8kHz из коробки;
  • Наличие своих собственных голосов у авторов решения, не нарушающих чужие права и лицензии;
  • Высокая скорость работы на "слабом" железе. Достаточная скорость работы на 1 потоке / ядре процессора;
  • Не требует GPU, команды ML инженеров или какой-либо дополнительной тренировки или для использования;
  • Минимализм и отсутствие зависимостей / использование в 1 строчку / не надо ничего собирать или чинить;
  • Позиционируется именно как готовое решение, а не очередной фреймворк / компиляция чужих скриптов / тулкитов для сбора плюсиков;
  • Решение никак не связано и не аффилировано с закрытыми экосистемами и продуктами Гугла / Сбера / Яндекса / вставить нужное;

Мы попытались учесть все эти пункты и представить комьюнити свое открытое некоммерческое решение, удовлетворяющее этим критериям. По причине его публичности мы не заостряем внимание на архитектуре и не фокусируемся на каких-то cherry picked примерах — вы можете оценить все сами, пройдя по ссылке.

LIT – Инспектор для вашего NLP. Обзор, установка, тест

Время на прочтение6 мин
Охват и читатели3.2K

Инспектор и даже где-то "толкователь", LIT или Language Interpretability Tool — мощная платформа с открытым исходным кодом для визуализации и интерпретации NLP-моделей. Платформа была представлена на EMNLP 2020 специалистами Google Research в ноябре 2020 года. LIT еще в статусе разработки, поэтому разработчики ничего не гарантируют, в том числе работу на платформе windows. Но у меня получилось, делюсь опытом.

Читать далее

Синтез речи виртуальных ассистентов Салют: как мы отошли от классических научных статей, чтобы сделать его человеческим

Время на прочтение12 мин
Охват и читатели33K

Автор исходного изображения: Blue Flourishes/Shutterstock.com

Всем привет! В этом посте мы расскажем про синтез голосов Сбера, Афины и Джой — виртуальных ассистентов семейства Салют. О том, как мы в SberDevices обучали модели, чтобы сделать синтез живым и специфичным для каждого персонажа, а также с какими проблемами столкнулись и как их решали.

Согласно нашей «библии ассистентов», Сбер — энергичный гик, Афина — взрослая и деловая, а Джой — дружелюбная и веселая. Они отличаются не только уникальными характерами, обращением на «ты»/«вы» и предпочтениями в шутках. Мы попытались сделать так, чтобы их личности отражались и в голосах, которыми они разговаривают.


Персонажей озвучили телеведущая Анастасия Чернобровина (Афина) и актёры дубляжа Даниил Щебланов и Татьяна Ермилова (Сбер и Джой). Виртуальных ассистентов можно услышать в приложениях Сбер Салют, СберБанк Онлайн, нашем колл-центре по номеру 900, а также в устройствах SberBox и SberPortal. Всё, что вы услышите, — это синтез речи, реализованный с помощью нейросетей. Он работает на связке Tacotron 2 и LPCNet.

Но, чтобы было понятно, что, зачем и почему, — немного теории и истории

Читать далее

Как сделать интеллектуального чат-бота для проведения опросов/интервью

Время на прочтение14 мин
Охват и читатели9.3K

В современном мире всё большую популярность приобретает методика под названием customer development для тестирования идей и гипотез о будущем продукте. Методику придумал "крёстный отец Кремниевой долины" Стив Бланк.
Одним из числа сильных инструментов в "разработке клиентов" является интервью, когда вы можете побеседовать с респондентом. Однако им не всегда можно воспользоваться ввиду разных причин, которые условно можно свести к объёму бюджета и имеющемуся времени. Но во многих ситуациях можно воспользоваться опросом. Причём опросом, который можно автоматизировать за счёт применения чат-бота и нейронной сети для определения смысла ответов респондента.

Читать далее

Как преобразовать текст в алгебру

Время на прочтение10 мин
Охват и читатели5.2K

Как пишут тексты в Большой Академии в Лагадо

Алгебра и язык (письменность) являются двумя разными инструментами познания. Если их объединить, то можно рассчитывать на появление новых методов машинного понимания. Определить смысл (понять) – это вычислить как часть соотносится с целым. Современные поисковые алгоритмы уже имеют задачей распознавание смысла, а тензорные процессоры Google выполняют матричные умножения (свертки), необходимые для алгебраического подхода. При этом в семантическом анализе используются в основном статистические методы. В алгебре выглядело бы странным использование статистики при поиске, например, признаков делимости чисел. Использование алгебраического аппарата полезно также для интерпретации результатов вычислений при распознавании смысла текста.

Читать далее

FAQ чатбот COVID-19 — спустя год

Время на прочтение3 мин
Охват и читатели1.5K

Около года назад я решил написать чат-бота, который отвечает на часто задаваемые вопросы о COVID-19. В тот момент многим показалось, что моя идея не более чем хайп, который спустя короткий промежуток времени потухнет. Однако, оказалось, что спустя год, данная тема только набирает обороты. В этой статье я расскажу о том, как мы создавали чат-бот для консультации по вопросам COVID-19 по просьбе МВД (BMI) Германии, а также выражу идею о создании аналогичного проекта в России.

Читать далее

Как мы анализируем предпочтения пользователей виртуальных ассистентов Салют

Время на прочтение9 мин
Охват и читатели3.2K
Приветствую всех! Меня зовут Ибрагим, я работаю в SberDevices и занимаюсь машинным обучением. Сегодня я расскажу о том, как мы находим и анализируем интересы и предпочтения пользователей наших виртуальных ассистентов Салют.

Также поделюсь видео с моего недавнего выступления на онлайн-конференции «Применение ML в Digital-продуктах», которую проводили коллеги из AGIMA и Epoch8.


В этом посте мы разберём следующее:

  • где можно искать данные, если для задачи нет готового датасета; 
  • как можно быстро и дёшево увеличить размер своего датасета;
  • как использовать кластеризацию сырых данных;
  • какие есть методы улучшения качества датасета после разметки.

Вступление


Работая над виртуальными ассистентами, нам часто необходимо обучать специфические модели-классификаторы, которые решают свою узкую задачу. У таких задач есть несколько особенностей:

  • отсутствие готовых датасетов;
  • отсутствие чёткой структуры классов, на которые можно разделить данные;
  • наличие сырых логов, в которых могут быть интересующие нас данные;
  • сильный дисбаланс классов, где самый многочисленный класс – это класс нерелевантной информации.

Для решения подобных задач, мы выработали определенный пайплайн – последовательность шагов, которая позволяет быстро и дёшево обучить нужную модель. Ниже рассмотрим процесс обучения модели для классификации интересов пользователей.

Hi-tech коммуникации, или как мы создаем голосового агента всего на 500 записях

Время на прочтение8 мин
Охват и читатели2.4K
image

На Хабре не раз и не два писали о голосовых роботах, принципах их работы и задачах, которые они способны решать. Соответственно, общие принципы создания таких роботов (их мы предпочитаем называть «цифровыми агентами) понятны многим. И это хорошо, ведь в этой статье мы хотели бы поговорить о быстром обучении роботов.

Нам удалось успешно обучать агентов на очень ограниченной базе звонков. Минимальное количество записей, на основе которых можно разработать полноценного цифрового агента — всего 500. (Спойлер — речь идет, скорее, о специализации ассистента, а не обучении с нуля). Как происходит обучение, и какие здесь есть подводные камни, особенности, что лежит в основе технологии? Об этом сегодня и поговорим.

Как сделать трансформер чат-бот на Trax?

Время на прочтение9 мин
Охват и читатели4K

Экспериментировать с библиотекой Trax и архитектурой трансформер оказалось крайне увлекательно. Предыдущая статья была про саммаризатор. В этой хочу рассказать о том как я учил трансформер общаться на русском языке.

Сравнительно простого чат-бота можно построить на базе языковой модели, которая умеет прогнозировать следующее слово по предыдущим, и которую несложно сделать, используя Трансформер-декодер по аналогии с GPT. В этом случае диалог формируется как связный неструктурированный текст. Чтобы превратить этот текст в чат, нужно вмешиваться в процесс генерации, добавляя реплики пользователя. Но обо всё по порядку.

Читать далее

Ближайшие события

Эмбеддинги пользователя в DMP. Эксперименты, оптимизация, внедрение

Время на прочтение7 мин
Охват и читатели6K

Всем привет! Мы из команды ML проекта DMP (Data Management Platform) в AdTech Rambler Group. В этой статье поговорим про эмбеддинги.

Эмбеддингом в машинном обучении принято называть вектор чисел фиксированной длины, который описывает некую сущность по ряду параметров. В нашем случае стоит задача представить наших пользователей в виде векторов. Расскажем, как мы это делаем и какие задачи решаем с помощью эмбеддингов.

Общее про DMP и зачем нам эмбеддинги?

Начнем с того, что у Rambler Group есть свой стек RTB-технологий (real-time-bidding), которые позволяют продавать и откручивать современную programmatic-рекламу, подбирая для конкретного пользователя наиболее оптимальные объявления. Еще у нас есть много логов пользовательского поведения, из которых нужно извлечь сигнал об их предпочтениях для персонализации рекламы. Здесь и появляется DMP.

DMP – это инструмент для создания единого профиля пользователя. Делается это путем сбора, обработки и структурирования событийных логов пользователей различных активов Rambler Group. Конечная цель DMP – построение и хранение аудиторных сегментов, которые используются для выделения целевых аудиторий и таргетирования онлайн-рекламы в системе RTB.

читать далее

Как разработчику голосовых навыков получить выход на аудиторию Сбера (короткий путь)

Время на прочтение3 мин
Охват и читатели1.8K

Just AI стал первым аккредитованным технологическим партнером SberDevices по созданию голосовых навыков для виртуальных ассистентов Салют. Теперь бизнес может заказывать в Just AI разработку голосовых смартапов, которые будут доступны в ТВ-приставке SberPortal, умном экране SberBox и в мобильных приложениях Сбера — в том числе навыки со встроенными платежами.

А в конструкторе чат-ботов Aimylogic и enterprise-платформе JAICP появилась удобная интеграция с новым каналом — разработчики могут самостоятельно создавать смартапы и даже переносить в ассистентов Салют уже готовые навыки (например, разработанные для Алисы). Рассказываем, как это делать и зачем.

Читать далее

Чёрный петух, жирный творог и альпийская корова, или Уменьшение предвзятости в классификации токсичности

Время на прочтение9 мин
Охват и читатели4.7K

В ноябре на EMNLP 2020 в четвёртый раз прошёл воркшоп WOAH: он был посвящён алгоритмам, обнаруживающим кибербуллинг и токсичность в онлайн-пространстве. Мы выступили со статьёй о ложноположительных срабатываниях детектора враждебных высказываний.

Read more

Как новая нейронная сеть Facebook решает дифференциальные уравнения

Время на прочтение7 мин
Охват и читатели14K

Два исследователя Facebook из Парижа создали для FB новую нейронную сеть, способную решать сложные математические уравнения, даже те, которые имеют дело с интегральным исчислением. Их работа описана в статье от 2 декабря, опубликованной в архиве arXiv (хранилище научных исследований под управлением Корнельского университета). Это еще один большой шаг вперёд для нейронных сетей.

Приятного чтения!

Как улучшить резюме с помощью алгоритмов обработки текстов на естественных языках

Время на прочтение11 мин
Охват и читатели5.7K

Рекрутеры используют всё более сложное ПО и инструменты для анализа и сопоставления присылаемых резюме с размещёнными вакансиями и описанием должностных обязанностей в них. Если в вашем резюме будет представлена только общая информация или если ваши ответы на описание должностных обязанностей будут указаны расплывчато и/или без всякой конкретики, такие инструменты сработают против вас. Ваш отклик на вакансию может быть отвергнут искусственным интеллектом. Да, это действительно так, и бьюсь об заклад, что вы об этом не знали, а если знали, то не верили!

В этой статье я хочу представить ряд техник, которые помогут повысить шансы вашего резюме на рассмотрение. В этом практическом примере мы будем использовать алгоритмы обработки текстов на естественных языках (Natural Language Processing, NLP), Python и ряд визуальных инструментов библиотеки Altair. Итак, готовы нанести ответный удар по кадровикам?

Приятного чтения!

DeepPavlov 3 года: обзор и итоги 2020 года

Время на прочтение10 мин
Охват и читатели6K

Уже февраль 2021 года, а значит пришло время подводить итоги! В это время, 3 года назад, состоялся первый альфа релиз библиотеки. Библиотека DeepPavlov v0.0.1 содержала несколько предварительно обученных моделей и конфигураций JSON. А сегодня у нас есть несколько продуктов, множество пользователей и сценариев использования, достижения в всемирно известных конкурсах и конференциях, и всего через несколько месяцев библиотека DeepPavlov совершит скачок до версии v1.

И несмотря на обстоятельства пандемии, в 2020 году у нас было много задач и поводов для гордости. Как минимум, мы обновили наш веб-сайт, выпустили новый продукт DP Dream, выиграли Про/Чтение, а также повторно участвуем в Alexa Prize Challenge. Об этих и других достижениях мы рады поделиться с вами в обзоре нашего 2020 года.

Ps. 5 марта в честь 3х летия состоится встреча пользователей и разработчиков открытой библиотеки DeepPavlov. Посмотреть детали и зарегистрироваться можно на сайте

Читать далее

NLP (Natural Language Processing) для обращений граждан. Эксперимент на реальных данных

Время на прочтение10 мин
Охват и читатели5.3K

Когда собираешься строить систему обработки обращений граждан, неплохо бы автоматизировать и работу с текстами. Часть операций по атрибутированию, классификации и аннотированию наверняка можно переложить на машину. Но как определить, какие задачи автоматизации поддаются хорошо, а какие - не очень? В поисках ответа на этот вопрос мы попытались понять, что может предложить рынок с точки зрения продуктов, которые можно было бы интегрировать в систему документооборота white-label и провели исследование на реальных данных. 

Читать далее

Вклад авторов