Все потоки
Поиск
Написать публикацию
Обновить
405.37

Python *

Высокоуровневый язык программирования

Сначала показывать
Порог рейтинга
Уровень сложности

Практическая обработка изображения линии горизонта с помощью Python

Время на прочтение7 мин
Количество просмотров7.2K

Краткое руководство по профилированию линии горизонта городской панорамы с помощью Python в несколько строк кода.

Читать далее

Книга «Python без проблем: решаем реальные задачи и пишем полезный код»

Время на прочтение18 мин
Количество просмотров37K
image Привет, Хаброжители!

Компьютер способен решить практически любую задачу, если ему дать правильные инструкции. С этого и начинается программирование. Даниэль Зингаро создал книгу для начинающих, чтобы вы сразу учились решать интересные задачи, которые использовались на олимпиадах по программированию, и развивали мышление программиста.

В каждой главе вам даются задания, собственные решения можно выложить на сайт и получить оценку профи. Вы на практике освоите основные возможности, функции и методы языка Python и получите четкое представление о структурах данных, алгоритмах и других основах программирования. Дополнительные упражнения потребуют от вас усилий, вы должны будете самостоятельно изучить новые понятия, а вопросы с несколькими вариантами ответов заставят задуматься об особенностях работы каждого фрагмента кода.

Вы узнаете, как:
  • запускать программы на Python, работать со строками и использовать переменные;
  • писать программы, принимающие решения;
  • повысить эффективность кода с помощью циклов while и for;
  • использовать множества, списки и словари для организации, сортировки и поиска данных;
  • разрабатывать программы с использованием функций и методики нисходящего проектирования;
  • создавать алгоритмы поиска и использовать нотацию «О большое» для разработки более эффективного кода.

К концу книги вы не только овладеете Python, но и научитесь тому типу мышления, который необходим для решения задач. Языки программирования приходят и уходят, а подходы к решению проблем останутся с вами навсегда!
Читать дальше →

[Python Intermediate] Урок 2. Docker и docker-compose

Время на прочтение11 мин
Количество просмотров37K

К сожалению, в python-мире до сих пор повсеместно применяется неизолированный запуск приложения и его инфраструктуры на личных устройствах. Боюсь, даже опытные специалисты неохотно используют контейнеризацию, хотя в действительности её плюсы неоспоримы.

Во-первых, она позволяет при локальном запуске повторить среду продакшена, что может уберечь от многих неочевидных ошибок. А во-вторых, при переезде с компа на комп или при появлении нового разработчика не придётся в сотый раз корячиться с настройкой приложения и инфраструктуры. Конфигурация производится лишь однажды и в дальнейшем просто поддерживается в актуальном состоянии.

Читать далее

Метод Рудольфа Калмана для сглаживания рядов

Время на прочтение2 мин
Количество просмотров6K

Метод Р. Калмана используется для сглаживания рядов, которые используются повсеместно, так как любую функцию можно представить в виде ряда.Поэтому он получил большое распространение в области обработки научной информации, в анализе информации получаемой с датчиков. В этой статье мы реализуем алгоритм Калмана на языке Python и наглядно увидим его работу.

Читать далее

Новый взгляд на асинхронность в Python: в лучших традициях gevent, но ещё лучше

Время на прочтение4 мин
Количество просмотров9.3K

Некоторые уже видели мои статьи про добавление асинхронности в django. Этот пост не об этом: вопрос более широкий и посвящён асинхронности в целом. И подход совсем другой.

Кстати, вопрос с асинхронным django тоже решился - как побочный эффект. Между прочим, собираюсь использовать это в продакшене при первой возможности.

Итак, асинхронность в стиле gevent - что бы это могло быть? Читайте под катом. На картинке - иллюстрация к сказке Киплинга "Слонёнок".

Читать

Как без труда разворачивать в облаке модели машинного обучения

Время на прочтение11 мин
Количество просмотров5.6K
image

Разверните в продакшене вашу первую ML-модель. Для этого вам понадобится очень простой технологический стек

image
Фото Рэнди Фэза с Unsplash
Читать дальше →

Как оценить размер данных: краткий гайд

Время на прочтение5 мин
Количество просмотров13K

Оценка размера данных — это относительно простой навык, который одновременно: а) легко никогда не освоить; б) весьма полезен после того, как вы им овладели. Он может пригодиться при проектировании систем, в отладке сложной проблемы распределенной системы и, разумеется, при обсуждении архитектурных задач на собеседовании.

Автор Уилл Ларсон*, технический директор компании Calm, в своей статье признается, что никогда не был особенно хорош в «оценке». Поэтому он решил потратить несколько часов на развитие этого навыка, что со временем вылилось в текстовые заметки на эту тему. Под катом автор делится полезными правилами для оценки требуемого дискового пространства, а затем собирает фрагмент кода на SQLite3, чтобы продемонстрировать, как можно проверить результаты вашей «оценки».

*Обращаем ваше внимание, что позиция автора не всегда может совпадать с мнением МойОфис.

Читать далее

DeepWalk: поведение и как его реализовать

Время на прочтение8 мин
Количество просмотров4.5K
imageШпаргалка по быстрому анализу и оценке отношений в графовых сетях при помощи Python, Networkx и Gensim.

При помощи графовых структур данных можно представлять сложные взаимодействия, и работа с ними открыла новые пути анализа и классификации сущностей – смотря, как они влияют друг на друга. Притом, что такой анализ – очень мощное средство для нахождения различных структур внутри сообществ, в них не хватает возможностей запрограммировать аспекты графа как входную информацию для традиционных алгоритмов машинного обучения. Алгоритм DeepWalk [1] позволяет схватывать взаимодействия, содержащиеся в графе и программировать их в простых нейронных сетях как векторные представления, которые далее могут потребляться вышеупомянутыми алгоритмами машинного обучения. В Интернете много простых вводных статей, позволяющих познакомиться с алгоритмом DeepWalk, однако не хватает таких, в которых приводился бы код и сообщались бы детали реализации подобных систем. Под такими деталями я понимаю параметризацию модели, соображения о развертывании и обработку невидимых данных.

В этой короткой статье мы в общем виде рассмотрим графовые сети, Word2Vec / Skip-Gram, а также процесс DeepWalk. В качестве иллюстрации приведу пример с многоклассовой классификацией, на котором демонстрируется ход алгоритма. Рассмотрим различные конфигурации параметров и обратим внимание, как они влияют на производительность алгоритма. В заключение обрисую некоторые моменты, связанные с развертыванием и обработкой невидимых данных внутри системы.
Читать дальше →

Telegram бот с offline распознаванием голосовых и генерацией аудио из текста

Время на прочтение9 мин
Количество просмотров30K

Всем привет! После прочтения постов про голосового ассистента и  сервис Silero, мне стало интересно поиграться с offline распознаванием аудио в текст, а также с обратным преобразованием текст в аудио. И как все начинающие разработчики я сделал своего Telegram бота. Просто Telegram – это удобный и мобильный интерфейс для взаимодействия с чем угодно.

В своем пет-проекте я использовал aiogram, vosk, silero и ffmpeg.

Подробности под катом!

Понимают ли нейронные модели грамматику человеческого языка?

Время на прочтение11 мин
Количество просмотров2.9K

В лингвистике принято считать, что основным свойством языковой способности человека является возможность определять, насколько грамматически корректно предложение. Подобные суждения говорящих о правильности языкового высказывания получили название «оценок грамматичности/ приемлемости». Лингвисты используют суждения о грамматичности для исследования синтаксической структуры предложений.

Читать далее

AiPainter — цифровой AI-художник

Время на прочтение3 мин
Количество просмотров6.5K

Доброго времени суток, уважаемые коллеги по цеху! Хочу рассказать о своём последнем проекте, написанном по фану - обёртке для трёх нейросетевых проектов: нашумевшей StableDiffusion (используется её форк InvokeAI) и более старых - lama-cleaner и rembg.

Вроде интересно, почитаю подробности

7 полезных книг по Python для старта и развития навыков: выбор сотрудников Selectel

Время на прочтение6 мин
Количество просмотров26K

Попросили коллег порекомендовать книги по изучению Python, которые когда-то помогли им прокачать свои навыки. Сохраняйте подборку в закладки — она пригодится и начинающим, и опытным специалистам. А также делитесь своими вариантами в комментариях.
Читать дальше →

Исчерпывающее руководство по множествам в Python

Время на прочтение10 мин
Количество просмотров84K

Класс set (множество) — это одна из ключевых структур данных в Python. Она представляет собой неупорядоченную коллекцию уникальных элементов. Класс set, в некоторой степени, соответствует математическому множеству. Многие широко используемые математические операции, применимые к множествам, существуют и в Python. Часто вычисления, производимые над множествами, оказываются гораздо быстрее, чем альтернативные операции со списками. В результате, для того чтобы писать эффективный код, Python-программисту просто необходимо уметь пользоваться множествами. В этой статье я расскажу об особенностях работы с классом set в Python.

Читать далее

Ближайшие события

Регулярки (regex) — основы для решения кейсов, про которые не пишут в статьях про основы

Время на прочтение4 мин
Количество просмотров25K

"Там просто регулярку написать" - говорили они...

Читать далее

Компенсация подсветки телевизора

Время на прочтение7 мин
Количество просмотров13K

При просмотре телевизора я постоянно вижу красный. В прямом смысле – подсветка моего Panasonic частично не работает, что вызывает неравномерное розовое свечение там, где должен быть белый цвет.

Мне этот старый хлам достался даром, поэтому я особо не жалуюсь, но пару недель назад все же решил как-то отображение цвета наладить.
Читать дальше →

Релиз Invoke AI 2.0 — интерфейса и инструментария для Stable Diffusion (win/linux/mac)

Время на прочтение2 мин
Количество просмотров14K

Привет всем! Сегодня состоялся релиз InvokeAI 2.0: A Stable Diffusion Toolkit, проекта, цель которого — предоставить энтузиастам и профессионалам набор надежных инструментов для создания и редактирования изображений с помощью нейросети. InvokeAI требует всего ~3,5 Гб видеопамяти для создания изображений 512x768 пикселей (и еще меньше для 512х512), и совместим с Windows/Linux/Mac с M1 и M2.

Вау, как круто!

Высокоэффективная генерация изображений на KerasCV с помощью Stable Diffusion

Время на прочтение10 мин
Количество просмотров16K


Сегодня покажем, как генерировать новые изображения по текстовому описанию при помощи KerasCV, stability.ai и Stable Diffusion. Материал подготовлен к старту нашего флагманского курса по Data Science.

Читать дальше →

Как создать и исследовать лог процесса выполнения программы

Время на прочтение3 мин
Количество просмотров5.5K

Привет, Хабр!

Анализ исходного кода - давно зарекомендовавшая себя практика для выявления отклонений до выхода приложения на рынок. Проверка на уязвимости, program understanding, поиск логических ошибок в использовании библиотек, code review и многие другие методы статического, динамического и ручного анализа кода широко применяются во многих компаниях занимающихся разработкой программ. 

Читать далее

Проверка автокорреляции с использованием критерия Дарбина-Уотсона средствами Python

Время на прочтение26 мин
Количество просмотров19K

Методический разбор для специалистов DataScience по применению критерия Дарбина-Уотсона для проверки автокорреляции средствами python

Читать далее

Realtime-матчинг: находим матчи за считанные минуты вместо 24 часов

Время на прочтение11 мин
Количество просмотров14K

Задача матчинга в последнее время набирает всё большую популярность и используется во многих сферах: банки матчат транзакции, маркетплейсы – товары, а Google и другие IT-гиганты проводят соревнования по решению таких задач на Kaggle.

Для маркетплейса матчинг – очень важный процесс, который решает сразу несколько задач:

1. При поисковом ранжировании из множества товаров показывать сначала самые выгодные предложения.

2. Объединять множество товаров в одну сущность и показывать предложения одного и того же товара от разных селлеров.

3. Понимать, как предложения селлеров выглядят относительно друг друга, и поощрять их дополнительными бонусами.

Сегодня мы поговорим не только о решении этой задачи, но и о способах её реализации: offline (batch) vs online (realtime). Также обсудим, как и зачем переходить от первого ко второму.

Читать далее

Вклад авторов