Введение
Недавно наткнулся на статью, размещенную на Хабрахабре, посвященную сравнению изображений «Выглядит похоже». Как работает перцептивный хэш. Так как я сам достаточно долго занимался этой тематикой (являюсь автором программы AntiDupl), то мне захотелось поделиться здесь своим опытом по данному вопросу. В статье я приведу два варианта алгоритма сравнения похожих изображений — базовый и улучшенный. Все они были проверены автором на практике в рамках указанного выше проекта. Изложение мое будет вестись без строгих доказательств, сложных формул и специальной математической терминологии. Надеюсь, что читатели простят меня за это.
Базовый Алгоритм
Мера схожести изображений
При сравнении похожих изображений первым встает вопрос: что считать мерой схожести изображений? Очевидно, что это величина имеет значение обратное различию изображений друг от друга. Следственно нужно выбрать некую метрику, характеризующую различие изображений друг от друга. Тогда схожими изображениями будут считаться изображения, отличие между которыми меньше некоторого порога. Для изображений с одинаковыми габаритами, обычно такой мерой различия служит среднеквадратическое отклонение пикселей одного изображения от другого. Хотя конечно, нам ни что не мешает выбрать другую метрику, например усредненную абсолютную разность пикселей изображений друг от друга.