
Предположим, у вас есть две последовательности чисел, которые вы хотите сравнить, чтобы измерить, насколько они связаны или зависимы друг от друга. Это действительно довольно общий сеттинг: две последовательности могут представлять временные ряды, так что у вас есть таблица с тремя столбцами и кучей строк. Первый столбец будет временем (скажем, с часовыми интервалами), а затем по одному столбцу для каждой последовательности; первый, например, может быть средней ценой акции за этот интервал, а второй - объемом торгуемых акций за этот интервал. Или вы могли бы сравнить процентное изменение цены одной акции по сравнению с другой. Конечно, это вовсе не обязательно должны быть временные ряды: у вас также может быть всего два столбца (то есть вообще без столбца времени). Первый может быть ростом американца старше 30 лет в дюймах, а второй — весом того же человека в фунтах. Или, чтобы использовать более актуальный пример, каждый столбец может представлять вектор эмбеддингов некоторых предложений на английском языке от определенной модели LLM. Первый столбец может быть вектором от модели Mixtral 8x7B для строки "I love my 3 sons" (Я люблю моих трех сыновей), а другой — от той же модели для строки "I cherish my 5 daughters" (Я дорожу моими пятью дочерьми).
В каждом из этих случаев у нас есть две последовательности данных, которые мы хотим сравнить. Проблема заключается в том, что в самой общей ситуации мы не имеем ни малейшего представления о том, какова может быть природа связи, или даже есть ли связь, о которой стоит говорить. Что, если две последовательности полностью независимы, как записи бросков двух разных честных кубиков? Что, если данные немного искажены и содержат некоторые экстремальные выбросы, которые искажают наиболее общие виды мер, на которые вы могли бы захотеть посмотреть, такие как среднее значение и дисперсия каждого столбца отдельно? Вы могли бы подумать сейчас: «Погодите, разве ответ на это — просто посмотреть на корреляцию?» И это действительно хорошая идея для проверки, поскольку это наиболее часто используемая мера ассоциации между двумя наборами данных.