Обновить
793.18

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Разработка алгоритма адаптивной системы стыковки НПА с БЭК с использованием методов машинного обучения

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели1.6K

Исследования, проводимые в работе, направлены на разработку удаленно управляемых робототехнических комплексов. В работе в качестве прототипа, на котором отрабатываются представленные в статье экспериментальные решения, выступают необитаемый подводный аппарат и автономный безэкипажный катер. В числе основных задач, решаемых в работе данными аппаратами, являются: мониторинг и оценка среды; обнаружение объектов и препятствий; маневрирование; сближение с объектом. В статье рассматривается задача стыковки в виртуальной 3D среде, в процессе которой осуществляется построение изображений рабочего пространства подводного робототехнического комплекса. Предложены алгоритмы построения 3D изображений рабочего пространства робототехнического комплекса в решении задачи стыковки, основанные на применении методов машинного обучения, включающей поиск, планирование движений, маневрирование и управление робототехническими комплексами для синхронизации подводного необитаемого аппарата с автономным безэкипажным катером в условиях неформализованных выполняющих сред. Результаты работы показывают, что применение методов машинного обучения в решении данных задач позволяют повысить уровень автономности аппаратов.

Читать далее

Алгоритм Monte Carlo Tree Search простыми словами

Время на прочтение11 мин
Охват и читатели20K

Можно ли научить ИИ играть в настольную игру и выигрывать в ней, если мы сами не знаем как это сделать? Да! И один из способов — использовать алгоритм Monte Carlo Tree Search (MCTS). Он актуален даже сейчас, в эпоху развития нейронных сетей.

У многих людей, в том числе и у меня, поначалу были сложности с пониманием алгоритма, как и с верой в то, что он может хорошо играть. В этой статье хочу рассказать об MCTS максимально просто и помочь разобраться в нем новичкам. В первой главе расскажу об основах, с которыми многие могут быть уже знакомы. Однако считаю, что они действительно важны для понимания. Подробности под катом!
Читать дальше →

Обзор библиотеки Stan в R

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели2K

Приветствую!

Stan - это библиотека на C++, предназначенная для байесовского моделирования и вывода. Она использует сэмплер NUTS, чтобы создавать апостериорные симуляции модели, основываясь на заданных пользователем моделях и данных. Так же Stan может использовать алгоритм оптимизации LBFGS для максимизации целевой функции, к примеру как логарифмическое правдоподобие.

Для облегчения работы с Stan из языка программирования R доступен пакет rstan, который предоставляет интерфейс R для Stan.

Сегодня мы и рассмотрим этот пакет.

Читать далее

Лосось и машина

Уровень сложностиСредний
Время на прочтение19 мин
Охват и читатели3.5K

Одно из самых увлекательных дел, которое счастливая случайность может подкинуть учёному‑информатику — это сложная социотехническая задача из области, переживающей процесс цифровой трансформации. В моём случае это была задача подсчёта рыб. Недавно я работал в роли консультанта в сфере экологии, уделяя основное внимание подсчёту рыб, проплывающих через крупные плотины гидроэлектростанций. Занимаясь этим большим проектом, я узнал о том, как управляют системами создания наборов данных, в работе которых участвует человек, как координируют функционирование таких систем. Кроме этого я узнал о тех сложностях и неожиданностях, которые сопутствуют тому, кто пытается осмыслить результаты исследований и поделиться ими с теми, кому они интересны.

Читать далее

Побеждаем рутину в Data Science: как перестать быть недопрограммистами и недоисследователями

Уровень сложностиСредний
Время на прочтение22 мин
Охват и читатели21K

Профессия Data Scientist сейчас стала особенно привлекательна, вовлекая еще больше энтузиастов и даже евангелистов, благодаря последним достижениям в области генерации текстов и изображений. Внешний фон наводит на мысли, что будни дата сайентиста заполнены исключительно творческой самореализацией, и рутина в процессы его работы никогда не сможет просочиться. Увы, но большую часть DS команд рутина уже поглотила.

Читать далее

Под капотом графовых сетей

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели10K

Графовые сети - мощный инструмент анализа данных, базирующийся на взаимосвязях объектов в виде графа. В статье рассматриваются различные типы графовых сетей (включая графовые сверточные, рекуррентные и с механизмом внимания) и их применение для решения задач анализа данных. Этот обзор предоставляет всестороннее представление о ключевых аспектах графовых сетей в мире анализа данных.

Клац-клац

Как мы пытались разместить статью о новом виде спорта на Википедии, а ее украли роботы…

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели5.2K

Здравствуйте, уважаемые читатели!

В этой статье будет проведен разбор одного практического случая - попытки разместить статью на ресурсе Википедия.
Будет дано подробное описание случая и представлены очень важные комментарии от специалиста в данной области.

Присутствует интрига, кульминация и простая развязка =)

Читать далее

Boximator: ИИ-модуль от ByteDance Research как новая веха в области генерации видео

Уровень сложностиСредний
Время на прочтение8 мин
Охват и читатели1.8K

Одной из главных целей в генерации видео с помощью искусственного интеллекта является создание полностью управляемого, а также достоверного движения объектов. С помощью изменения сцен и улучшения качества по заданным критериям на основе предпочтений пользователя генерация контента выходит на совершенно новый уровень. К нему сделала шаг команда ByteDance Research, представив Boximator (box + animator) – новый инструмент для работы с видео на основе ИИ. ByteDance – родитель небезызвестного Tik-Tok, а из этого следует, что в скором времени там следует ожидать больше искусственно генерируемого контента. По-настоящему танцующих девушек или реального липсинка, судя по всему, станет значительно меньше :)

В этой статье вы познакомитесь с новой разработкой, узнаете о её новаторстве, архитектуре и функциях, а также о её преимуществах перед конкурентами.

Приятного прочтения!

Читать далее

GPT или GigaChat — ответит RAGAS

Время на прочтение8 мин
Охват и читатели7.8K

В предыдущей статье мы разбирались с тем, как RAGAS помогает оценить работу ретриверов в RAG-системах. Продолжая наше исследование, теперь мы переключаемся на другой важный аспект - качество языковых моделей, или LLM. Эти модели играют центральную роль в создании тех ответов, которые мы видим при общении с чат-ботами. Понять, насколько эффективны они в своей задаче, крайне важно, так как именно от их работы зависит успешное взаимодействие пользователей с системой.

Читать далее

Книга «Python для сложных задач: наука о данных. 2-е межд. изд.»

Время на прочтение11 мин
Охват и читатели11K
image Привет, Хаброжители!

Python — первоклассный инструмент, и в первую очередь благодаря наличию множества библиотек для хранения, анализа и обработки данных. Отдельные части стека Python описываются во многих источниках, но только в новом издании «Python для сложных задач» вы найдете подробное описание IPython, NumPy, pandas, Matplotlib, Scikit-Learn и др.

Специалисты по обработке данных, знакомые с языком Python, найдут во втором издании решения таких повседневных задач, как обработка, преобразование и подготовка данных, визуализация различных типов данных, использование данных для построения статистических моделей и моделей машинного обучения. Проще говоря, эта книга является идеальным справочником по научным вычислениям в Python.
Читать дальше →

Как правильно генерировать обучающие данные для OCR?

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели3.4K

Мы в Smart Engines много пишем про распознавание документов. И, конечно, для распознавания документов нам требуется обучать нейросети, в частности, сети, распознающие текст на картинке. А им, как известно, нужно больше золота данных. И сегодня мы бы хотели поговорить о влиянии обучающих данных на итоговую сеть и о том, как такие данные синтезировать.

Далее

Total.js и интеграция с ИИ

Время на прочтение10 мин
Охват и читатели7.1K

Динамика приложений с искусственным интеллектом продолжает сеять вопросы по выбору “удачного” фреймворка, который мы могли бы использовать при создании. Поскольку именно от нашего выбора в принципе и зависит продолжительность жизни нашего детища.

В этой статье я бы хотела обратиться к одному старенькому фрейморку, рассмотреть его особенности и фичи, которые способные выделить его на фоне другого софта. Так ли он хорош? А если хорош, то почему?

Не буду затягивать с буквами во вступлении и предлагаю перейти сразу к делу!

Приятного прочтения(:

Читать далее

AI чат боты — хайп или реальная польза. Примеры интеграции умных помощников в  CRM и ERP системы

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели13K

Всем уже известно, что чат-боты дают возможность быстро и эффективно выстраивать коммуникацию с клиентами, но их истинный сила раскрывается при интеграции с корпоративными системами управления, а именно CRM (Customer Relationship Management) и ERP (Enterprise Resource Planning), HRM (Human Resource Management), интернет магазином и любой другой открытой системой.

Читать далее

Ближайшие события

Нейронные сети и dataset IRIS

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели13K

Исследовательская работа по dataset IRIS и библиотеке для машинного обучения и построения нейронных сетей tensorflow.

Читать далее

Мониторинг ИИ-систем. Часть 2

Время на прочтение7 мин
Охват и читатели2.6K

В жизни ИИ‑системы, медицинской или любой другой, случаются неудачные моменты.

Часть таких ситуаций — непредвиденные ошибки. Да, все разработчики понимают, что рано или поздно что‑то пойдёт не так, но случается это всегда по‑разному и иногда в самые неподходящие моменты.

К примеру, неправильно заполненный тег части тела в DICOM‑файле и некорректная работа модели по фильтрации снимков может привести к возникновению пневмоторакса в стопе:

Читать далее

Реализация слоев в Нейронных сетях (часть 1)

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели5.9K

Не приходил ли вам когда-нибудь в голову вопрос о том, как устроены слои нейронных сетей под капотом? Задумавшись над этим вопросом, я перерыл интернет в поисках полноценной реализации слоёв, но находил лишь отдельные куски кода или слишком упрощенные примеры, где чаще всего использовался лишь один слой с одним нейронном для наглядности. В данной статье я реализовал полноценную многослойную нейронную сеть прямого распространения с неограниченным количеством нейронов.

Читать далее

Разговариваем с BI на естественном языке

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели14K

Всем привет! Искусственный интеллект уже научился писать простые запросы к базам данных, но можно ли совсем избавиться от кода в работе аналитиков? Мы расскажем про наши нейросетевые эксперименты, в которых мы научили BI-систему слушать, понимать и отрабатывать запросы аналитиков на естественном языке.

В команде R&D SberData мы ищем и разрабатываем технологии обработки, хранения и анализа данных Сбера. Мы исследуем все перспективные технологии, которые появляются на рынке, разрабатываем новые продукты, которые использует Сбер и его партнёры. Одно из приоритетных направлений для нас — это анализ данных. В Сбере более 100 тысяч пользователей BI (Business Intelligence). Естественно, что у такого количества аналитиков самые разные потребности и требования к сервису и продукту. И возможность сделать их работу проще и удобнее — это большой вызов и интересная задача для нашей команды. В этот раз мы пробовали научить LLM-модель написать правильный SQL-код по запросу на естественном языке.

Читать далее

Можно ли научить чат-бота всегда говорить правду

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели3.7K

Привет, Хабр, меня зовут Ксения Плесовских и я развиваю генеративный ИИ в компании lad, разрабатывая чат-боты для бизнеса на основе LLM. В процессе работы над точностью ответов чат-бота, проверкой фактов и устранением галлюцинаций от LLM, мне довелось проанализировать и опробовать разные подходы к этой проблеме, чем сегодня и хочу с вами поделиться. Поскольку объем материала получился достаточно большой, на несколько публикаций, в этой части расскажу лишь о подходе самокритики SELF-RAG.

Читать далее

Распознавание и перевод жестовых языков: обзор подходов

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели5.9K

Всем привет! В статье «Slovo и русский жестовый язык» мы рассказывали, как решаем задачу распознавания изолированных жестов, в статье «Русский жестовый язык: первое место в американском бенчмарке» делились результатами решения, а в статье «GigaChat и русский жестовый язык» речь шла о реализации прототипа общения с генеративной языковой моделью GigaChat. В этой статье речь пойдет о распознавании и переводе жестового языка и передовых подходах для их решениях. 

Читать далее

Помощь с текстом, перевод видео с японского и корейского, распознавание QR-кодов — что умеет обновлённый Яндекс Браузер

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели16K

Сегодня мы выпускаем большое обновление для Браузера с рекордным числом изменений, в основе которых лежат нейросети или другие методы машинного обучения. Теперь Браузер исправит ошибки в тексте, сократит или улучшит его, перескажет видео с японского или корейского, распознает QR-код в трансляции и предложит перейти по ссылке в один клик, а также защитит от фишинг-страниц и не только.

В этой статье расскажем, как мы обучали нейросеть с помощью учебника Розенталя, как модель, отвечающая за субтитры, понимает, что начал говорить другой человек, почему не каждый QR-код легко распознать и за счёт чего мы научились ловить фишинговые сайты, которые появились буквально 5 минут назад. Обо всём этом — под катом.

Читать далее

Вклад авторов