Как стать автором
Обновить
11.6

Matlab *

Математическое моделирование и одноимённый ЯП

Сначала показывать
Порог рейтинга
Уровень сложности

Что скрывает под собой скрытое (латентное) пространство?

Уровень сложностиСредний
Время на прочтение3 мин
Количество просмотров2.8K

Работа с латентными пространствами

Латентное пространство полезно для изучения функций данных и поиска более простых представлений данных для анализа.

Как используются латентные пространства в библиотеке eXplain-NNs?

Визуализация латентных пространств: Этот метод позволяет отобразить скрытые признаки или паттерны, выученные нейронной сетью, в этих латентных пространствах. Это может быть полезно для понимания, как модель организует данные и какие внутренние представления она использует для принятия решений.

Анализ гомологии латентных пространств: Еще один метод, предоставляемый библиотекой eXplain-NNs, это анализ гомологии латентных пространств. Анализ гомологии используется для изучения структуры и связей между этих латентных представлений. Это помогает понять, каким образом информация организована внутри модели и влияет на ее способность принимать решения.

Читать далее
Всего голосов 4: ↑4 и ↓0+4
Комментарии0

Новости

Введение в цифровую обработку сигналов

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров6.4K

Эта статья дает общее представление о том, что такое ЦОС (цифровая обработка сигналов), как она работает и какие преимущества может предложить. Цифровая обработка сигналов включает разработку алгоритмов, которые могут быть использованы для улучшения сигнала определенным образом или для извлечения из него некоторой полезной информации.

Чтобы понять преимущества ЦОС, давайте сначала рассмотрим традиционный метод обработки сигналов, то есть аналоговую обработку сигналов.

Это статья сделана совместно с автором курса по Цифровой обработке сигналов в INZHENERKA.TECH Волченковым Владимиром, доцентом кафедры телекоммуникаций и основ радиотехники ФГБОУ ВО «РГРУ им. В.Ф. Уткина» и научным сотрудником ООО «Лаборатория Сфера». Больше информации в нашем сообществе инженеров.

Аналоговая обработка сигналов

Возможно, самым простым примером аналоговой обработки сигналов является знакомая RC-цепь, показанная на рисунке 1.

Читать далее
Всего голосов 7: ↑6.5 и ↓0.5+6
Комментарии8

Разработка системы управления электроприводом постоянного тока. Часть 1 — математическая модель

Уровень сложностиСложный
Время на прочтение17 мин
Количество просмотров4.2K

Статья про разработку системы управления робототехнического устройства на примере привода рулевой поверхности малогабаритной ракеты.

Читать далее
Всего голосов 15: ↑15 и ↓0+15
Комментарии14

Управление электромеханической системой на основе ДПТ. Метод желаемой ЛАЧХ и другие средства Matlab

Время на прочтение13 мин
Количество просмотров1.4K

Частой задачей при обучении теории автоматического управления является расчет корректирующего устройства методом желаемой ЛАЧХ. Эта задача дается для ознакомления с большим миром управления в частотной области.
Зачем вообще частотный метод, когда есть модальный?
Дело в том, что в 1978 году Джоном Дойлом в статье Guaranteed Stability Margins for LQG Regulators было показано, что для LQG регуляторов не существует гарантированного запаса устойчивости, и поэтому в зависимости от объекта управления, шума и помех в каналах управления и измерения, LQG регулятор может быть сколь угодно чувствительным к неопределенности в модели и временным задержкам, а значит он может быть сколь угодно не надежным (робастным).
В данной статье покажем несколько способов расчета компенсатора частотными методами, помимо метода желаемой ЛАЧХ, в пакете Matlab с использованием Control System Toolbox.

Читать далее
Всего голосов 6: ↑6 и ↓0+6
Комментарии2

Истории

9 Синтез и коррекция систем автоматического регулирования (САР)

Время на прочтение14 мин
Количество просмотров2.3K

Продолжаем публикацию лекций по предмету "Управление в технических системах". Кафедра "Ядерные энергетические установки" МГТУ им. Н.Э. Баумана. Автор: Олег Степанович Козлов.

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

Читать далее
Всего голосов 10: ↑9 и ↓1+8
Комментарии0

Управление обратным маятником в MATLAB Simulink без формул. Настройка PID регуляторов

Уровень сложностиПростой
Время на прочтение2 мин
Количество просмотров1.8K

Простой и популярной реализацией закона управления обратным маятником является PID регулятор. Современные средства настройки коэффициентов PID регулятора позволяют решать подобные задачи нажатием пары кнопок даже без знания математики, физики и вообще без каких-либо технических знаний. Рассмотрим пример настройки PID регуляторов в Simulink для классического обратного маятника.

Объект управления (Plant)

Модель перевернутого маятника соберем в библиотеке Multibody. Для этого нам не понадобится знание физики и математики. Библиотека Multibody предоставляет нам готовые блоки степеней свободы, твердых тел, преобразований координат, которые нужно только верно соединить. Собираем подсистемы отдельно для маятника и отдельно для тележки, и собираем все вместе. Результат на рисунке, модель в прикрепленных файлах.

Читать далее
Всего голосов 7: ↑7 и ↓0+7
Комментарии0

Оптимальное управление обратным маятником, пример реализации модели в MATLAB

Время на прочтение9 мин
Количество просмотров2.1K

Классическим примером демонстрации возможностей теории управления является модель обратного маятника на тележке. В данной статье продемонстрируем решение классических проблем классическими методами, но в максимально тепличных условиях, когда всю рутинную работу за нас будут выполнять алгоритмы пакета MATLAB.

Читать далее
Всего голосов 16: ↑16 и ↓0+16
Комментарии3

Полиномиальные корневые методы синтеза САУ ч.3 (заключение)

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров1.5K

Леонид Маркович Скворцов. Широко известный в узких кругах математик, профессионально занимающийся математическими проблемами автоматического управления. Например, его авторские методы использованы в SimInTech. Данный текст, еще готовится к публикации. Но с разрешения автора, читатели Хабр будут первыми кто сможет оценить. Первая часть здесь... Вторая часть здесь...

Две предыдущие части были заполнены многоэтажными формулами в третей части разберем на примерах применение этих формул. Математику в жизнь!

Приведем примеры и покажем в видео как синтезировать регулятор для линейной модели двухроторного газотурбинного двигателя, работающего на базовом режиме малого газа, вместе с исполнительным механизмом. От теории к практике не приходя в сознание!

Читать далее
Всего голосов 11: ↑11 и ↓0+11
Комментарии2

Полиномиальные корневые методы синтеза САУ ч.2

Уровень сложностиСредний
Время на прочтение17 мин
Количество просмотров1.9K

Леонид Маркович Скворцов. Широко известный в узких кругах математик, профессионально занимающийся математическими проблемами автоматического управления. Например, его авторские методы использованы в SimInTech. Данный текст, еще готовится к публикации. Но с разрешения автора, читатели Хабр будут первыми кто сможет оценить. Первая часть здесь...

Читать далее
Всего голосов 4: ↑3 и ↓1+2
Комментарии2

Исследование звука: удаление шумов

Уровень сложностиСложный
Время на прочтение12 мин
Количество просмотров2.6K

Обработка звука - это процесс исследования динамической/статической звуковой дорожки при помощи применения определенного набора линейных и нелинейных алгоритмов с целью получения необходимой информации. 

Алгоритмы динамической обработки звука работают с потоковым аудио, когда статически обрабатывают уже готовую звуковую дорожку.

Данный процесс происходит с использованием компьютерных программ и зачастую сопровождается трудными техническими вычислениями, которые ложатся на вычислительные мощности компьютера или на отдельные его комплектующие части. 

Процесс исследования и обработки звука так или иначе присутствует в разных сферах профессиональной деятельности, будь то голосовые помощники, встроенные в мобильные устройства или любые другие устройства, индустрия профессионального бизнес-сообщества для фиксирования необходимой информации  или же специальные службы, использующие самые современные технологии для расследования преступлений. 

Если мы говорим о задаче обработки звука, то чаще всего имеем в виду применение к звуковой дорожке определенного набора стандартных и собственных алгоритмов, которые позволяют получить определенный срез информации о дорожке или же получить новую трансформированную аудио дорожку.

Цель данной работы – исследовать алгоритмы удаления посторонних шумов из аудио дорожки.

Такое программное обеспечение будет полезно для автоматических субтитров во время онлайн-конференций, логирования бизнес-встреч, работы с глухонемыми и слабослышащими.

Читать далее
Всего голосов 7: ↑6 и ↓1+5
Комментарии0

Дубинка (гиря) подброшенная в воздух. Решение дифференциальных уравнений в MATLAB

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров3.8K

Пример решения системы дифференциальных уравнений (ДУ) в MATLAB адаптивным и не адаптивным методами.

В MATLAB встроено множество численных решателей с адаптивным шагом для решения жестких, нежестких и полностью неявных систем. С помощью Symbolic Math Toolbox можно сначала выводить системы ДУ, а затем тут же решать их численными методами.

Описание модели

Для примера решим систему ДУ, которая описывает систему из двух масс m1 и m2, которые жестко соединены невесомым стержнем длинной L.

Читать далее
Всего голосов 11: ↑10 и ↓1+9
Комментарии19

Что такое синхронизированные векторные измерения и как их моделировать

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров1.9K

Привет, Хабр! Представим, что перед нами такой сложный объект для управления, как электроэнергетическая система России. Чтобы рассматривать ее в виде единого целого, нужны высокоточные измерения из различных точек энергосистемы, зачастую географически удаленных друг от друга. Для решения этой задачи был создан стандарт IEEE C37.118. Он описывает так называемые синхрофазоры, или синхронизированные векторные измерения (СВИ).

В этой статье мы обсудим что такое СВИ и зачем они нужны, подробно разберем типы и форматы сообщений, рассмотрим, как передаются сообщения внутри стека TCP/IP, а также смоделируем пакеты С37.118 с помощью КПМ РИТМ и PMU Connection Tester.

Читать далее
Всего голосов 6: ↑6 и ↓0+6
Комментарии1

Об импортозамещении MATLAB/Simulink на примере модели динамики авиационного средства поражения

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров11K

Когда-то давно меня попросили разработать модель динамики полета АСП (авиационного средства поражения) в отечественном ПО, в среде SimInTech, причем разработать не с нуля, а тупо повторив уже созданную ранее модель в Матлабе (с Симулинком), и любезно выложенную в публичный доступ на гитхабе.

Я подумал - почему бы и нет, ведь в Симинтеке есть практически все требуемые блоки, а каких нет, я доработаю по образу и подобию. Без погружения в детали, в конце концов так оно и вышло. Но мне справедливо возразили - а чем докажешь, что твоя модель считает в точности так же, в динамике, как и исходная матлабовская модель?

Читать далее
Всего голосов 82: ↑63 и ↓19+44
Комментарии44

Ближайшие события

Модальный метод синтеза в MATLAB

Уровень сложностиПростой
Время на прочтение2 мин
Количество просмотров1.2K

Частым заданием в различных курсах по теории автоматического управления является нахождение матрицы K для модального управления системой вида dx/dt = Ax+Bu y = Cx.

Такой тип задач легко решается в среде MATLAB.

Сперва наперво требуется задать нашу систему. Для примера возьмем типовую модель электродвигателя:

Читать далее
Всего голосов 6: ↑5 и ↓1+4
Комментарии3

Качество переходного процесса ч.2

Время на прочтение8 мин
Количество просмотров2.3K

Продолжаем публикацию лекций Олега Степановича Козлова с кафедры Ядерные Энергетические Установки МГТУ им. Баумана. Вторая часть лекции про качество САР и модель реактора как бонус.

В предыдущих сериях:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

7. Точность систем автоматического управления. Часть 1 и Часть 2

8. Качество переходного процесса ч.1

Читать далее
Всего голосов 14: ↑14 и ↓0+14
Комментарии4

Полиномиальные корневые методы синтеза САУ ч.1

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров6.5K

Ленонид Маркович Скворцов. Широко известный в узких кругах математик, профессионально занимающийся математическами проблемами автоматического управления. Например, его авторские методы использованы в SimInTech. Данный текст первая часть работы, которая еще готовится к публикации. Но с разрешения автора, читатели Хабр будут превыми кто сможет с ним ознакомится.

Все мы слышали, про преимущества советской математической школы над зарубежными математическими школами, но мало кто видел это приимущество в реальных задачах. В случае математических методов Леонида Марковича Скворцова, математика это не просто абстрактные формулы, а решение реальных прикладных задач, все можно увидеть пощупать и попробовать. В конце статьи видео-доказательство, практичесокй реализации преимуществ методов Леонида Марковича на практике.

Читать далее
Всего голосов 24: ↑23 и ↓1+22
Комментарии5

Настройка многоконтурных систем управления

Уровень сложностиСредний
Время на прочтение4 мин
Количество просмотров3.1K
PID регулятор MATLAB может быть настроен функцией pidTuner(). Каждый PID регулятор библиотеки Simulink также содержит механизм настройки параметров. При использовании SISO (Один Вход Один Выход) регуляторов многоконтурное управление рекомендуют выполнять последовательно: переходя от внутреннего контура (местная обратная связь) к внешнему. Но как быть с настройкой многоконтурных систем управления с параллельными или с перекрещивающимися (перекрестными) связями, например, как показано на Рисунок 1 [1], где требуется одновременная настройка блоков?

image

Рисунок 1. Многоконтурная Simulink модель.
Для настройки многоконтурных Simulink моделей в MATLAB имеется приложение “Control System Tuner” image. В этой работе рассматриваются особенности этого настройщика на примере построения двухконтурной системы управления.
Читать дальше →
Всего голосов 2: ↑2 и ↓0+2
Комментарии2

8. Качество переходного процесса ч.1

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров3.1K

В предыдущих сериях:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

7. Точность систем автоматического управления. Часть 1 и Часть 2

Читать далее
Всего голосов 15: ↑14 и ↓1+13
Комментарии1

Как я чуть не стал миллионером, продавая воздух, или почему Россия – не Америка

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров114K

Все знают, что Россия — энергетическая сверхдержава, она же – «разорванная в клочья Обамой бензоколонка». Но не все знают, как это может отражаться в области развития математического моделирования. Расскажу одну жизненную историю. 

Начну с далекого 2007 года. Довелось мне в те времена поработать на крупном заводе, который «эффективные менеджеры» как раз делили на несколько отдельных предприятий, каждое из которых крутилось, как могло.  В том цеху, который и стал одним из таких предприятий, на токарных станках могла крутиться (и крутилась!) металлическая болванка размером с автобус. А в печку для нагрева металла можно было затолкать паровоз. Целиком.  Когда я в первый раз увидел токарный станок, на котором крутится и обтачивается деталь размером с автобус, моему восторгу не было предела. Гордость за страну переполняла до состояния «в зобу дыханье сперло». А потом старожилы показали ту часть цеха, где стояли фундаменты таких же станков и пояснили:

- А вот тут были станки для точной обработки. Их продали китайцам по цене металлолома.

- А почему вот другие не продали?

- Потому, что у них точность обработки такая, что их только в металлолом можно сдать. Поэтому они здесь работают и крутятся как могут, и обтачивают валы турбин Siemiens.

Схема бизнеса был гениальна: Siemiens привозил на завод многотонные болванки, их неделями и месяцами обтачивали до состояния заготовок и увозили для чистовой обработки в Германию. Где уже выполняли чистовую доводку на точных и дорогих станках. Главные затраты при черновой обработке – это износ станков и инструмента, зарплата токаря и электроэнергия, необходимая для вращения тонн металла. Поскольку электроэнергия в РФ дешевле немецкой, недели обработки болванок с лихвой окупают транспортировку, а низкая точность обработки не требует дорогого обслуживания и мало чувствительна к износу еще советского оборудования.  В итоге весь бизнес заключался в «перепродаже» дешевой электроэнергии из РФ в Германию, но в виде металлических обточенных болванок. 

Читать далее
Всего голосов 293: ↑284 и ↓9+275
Комментарии301

Запускаем Matlab внутри Docker-контейнера с поддержкой GUI в ОС GNU/Linux

Уровень сложностиСредний
Время на прочтение51 мин
Количество просмотров5K

Возникла задача запускать графические приложения в полностью изолированной среде: как от Интернета, так и от файловой системы «хозяйской» ОС. В моём случае это был Matlab. Пишут, что в последних версиях он стал шибко «умным»: сам без спроса постоянно лезет в сеть и чем-то там постоянно обменивается со своими серверами. Однако использовать для поставленной задачи виртуальную гостевую машину / аппаратную виртуализацию (наподобие VirtualBox) — это, ИМХО, «too much». Docker подошел бы гораздо лучше, т.к. он использует то же ядро ОС и не требует эмуляции / виртуализации ввода-вывода, что существенно экономит ресурсы. Однако Docker «из коробки» не предназначен для запуска GUI-приложений. Что ж, попробуем это исправить и запустить таки Matlab внутри Docker-контейнера с полной поддержкой «иксов» и GUI.

Читать далее
Всего голосов 16: ↑15 и ↓1+14
Комментарии9
1
23 ...