Как стать автором
Обновить
1045.58

Искусственный интеллект

AI, ANN и иные формы искусственного разума

Сначала показывать
Порог рейтинга
Уровень сложности

Нечувствительные к весам нейронные сети (WANN)

Время на прочтение6 мин
Количество просмотров41K


Новая работа Google предлагает архитектуру нейронных сетей, способных имитировать врожденные инстинкты и рефлексы живых существ, с последующим дообучением в течение жизни.


А также значительно уменьшающую количество связей внутри сети, повышая тем самым их быстродействие.

Читать дальше →

Применение машинного обучения и Data Science в промышленности

Время на прочтение22 мин
Количество просмотров70K
Хабр, привет. Перевел пост, который идёт строго (!) в закладки и передаётся коллегам. Он со списком блокнотов и библиотек ML и Data Science для разных отраслей промышленности. Все коды на Python, и размещены на GitHub. Они будут полезны как для расширения кругозора, так и для запуска своего интересного стартапа.

image

Отмечу, что если среди читателей есть желающие помочь, и добавить в любую из подотраслей подходящий проект, пожалуйста, свяжитесь со мной. Я их добавлю в список. Итак, давайте начнём изучение списка.
Читать дальше →

Лес не сдается технологиям поиска, но инженеры наносят ответный удар

Время на прочтение6 мин
Количество просмотров19K

Фото: «Лиза Алерт».

Если в лесу пропал человек, лучший способ его найти — отправить тренированных поисковиков на прочесывание. Ни одна технология поиска пока не может заменить людей. В начале лета мы писали про несколько команд, которые в рамках конкурса «Одиссея» разрабатывали решения для дикой природы. Многие инженеры полагались на беспилотники с камерами и компьютерное зрение, но столкнулись с не очевидными проблемами — плохая связь, низкая скорость обработки и передачи огромных данных, плотные кроны деревьев и многое другое.

В итоге ни одно решение с компьютерным зрением не прошло в финал конкурса. Но технические эксперты говорили — если бы команды объединили усилия, вместе собрали датасет и обучили на нем алгоритмы, у компьютерного зрения мог быть шанс.

На прошлой неделе, 9 августа поисковый отряд «Лиза Алерт» вместе с «Билайном» объявили о запуске инструмента, который будет искать людей на фотографиях с беспилотников. Мы сходили на пресс-конференцию, приуроченную к запуску, и узнали, как он работает.

Natural Language Processing онлайн-чеков: курс уроков волшебства для обычного кота и другие проблемы

Время на прочтение10 мин
Количество просмотров7.9K
Компания CleverDATA занимается разработкой платформы для работы с большими данными. В частности, на нашей платформе есть возможность работать с  информацией из чеков онлайн-покупок. Перед нами стояла задача научиться обрабатывать текстовые данные чеков и строить на них выводы о потребителях для создания соответствующих характеристик на бирже данных. Было естественно для решения этой задачи обратиться к машинному обучению. В этой статье мы хотим рассказать про проблемы, с которыми встретились при классификации текстов онлайн-чеков. 

Источник
Читать дальше →

Neuralink: платформа интегрированного интерфейса мозг-компьютер с тысячами каналов

Время на прочтение21 мин
Количество просмотров37K


Примечание. 16 июля 2019г. Илон Маск презентовал технологию, которая стала одной из первых серьезных попыток введения нейроинтерфейсов в клиническую практику и имеющая реальные трансгуманистические цели в долгосрочной перспективе. Данная статья является переводом оригинальной статьи описывающей технологию нейрокомпьютерного интерфейса, ссылка на которую также размещена на сайте компании разработчика Neuralink. Статья содержит описание особенностей и характеристик основных модулей лежащих в основе данной технологии, в том числе: гибких биосовместимых микроэлектродов, роботизированного нейрохирургического манипулятора для введения электродов в мозг, а так же специализированной микроэлектроники обеспечивающей приём, усиление и оцифровку сигнала поступающего от нейронной активности.
Читать дальше →

Коммуницируй это: как доносить информацию потребителю в цифровом веке

Время на прочтение7 мин
Количество просмотров7.1K
Когда к нам в «ЛАНИТ Digital» приходят с вопросом, какой канал выбрать для продвижения в Интернете, мы не спешим с ответом. Ученые из Калифорнии посчитали, что в среднем человек потребляет 34 Гб информации в сутки. Как сделать так, чтобы в этом океане ваш контент не дрейфовал неприкаянным, а встретился, причем своевременно, со своим потенциальным потребителем, поговорим в этой статье.

Источник
Читать дальше →

Нейросеть в стекле. Не требует электропитания, распознаёт цифры

Время на прочтение2 мин
Количество просмотров39K
image

Все мы знакомы с такой способностью нейронных сетей, как распознавание рукописного текста. Основы этой технологии существуют уже много лет, но, лишь относительно недавно, скачок в области компьютерных мощностей и параллельной обработки данных позволили сделать из этой технологии очень практичное решение. Тем не менее, это практичное решение, в основе своей, будет представлено в виде цифрового компьютера многократно изменяющего биты, точно так же, как и при выполнении любой другой программы. Но в случае с нейронной сетью, разработанной исследователями из университетов Wisconsin, MIT, и Columbia, дело обстоит по-другому. Они создали стеклянную панель, не требующую собственного электропитания, но при этом способную распознавать рукописные цифры.
Читать дальше →

Инженер Amazon создал блокирующее устройство с ИИ, которое не пускает в дом кота с уличной добычей

Время на прочтение2 мин
Количество просмотров36K

Инженер Amazon Бен Хэмм разработал умный блокиратор, который не дает его коту по кличке Метрик приносить внутрь дома пойманных охотничьими лапками и зубками и по факту уже мертвых птиц и крыс.
Читать дальше →

Создаем музыку: когда простые решения превосходят по эффективности глубокое обучение

Время на прочтение9 мин
Количество просмотров27K
Представляю вашему вниманию перевод статьи «Создаем музыку: когда простые решения превосходят по эффективности глубокое обучение» о том, как искусственный интеллект применяется для создания музыки. Автор не использует нейронные сети для генерации музыки, а подходит к задаче, исходя из знания теории музыки, на основе мелодии и гармонии. Другой особенностью статьи является метод сравнения музыкальных произведений на основе матриц самоподобия. Такой подход, конечно, не является исчерпывающим, но он полезен как промежуточный шаг для генерации качественной музыки методами машинного обучения.

Лопнул ли пузырь машинного обучения, или начало новой зари

Время на прочтение10 мин
Количество просмотров111K
Недавно вышла статья, которая неплохо показывает тенденцию в машинном обучении последних лет. Если коротко: число стартапов в области машинного обучения в последние два года резко упало.

image

Ну что. Разберём «лопнул ли пузырь», «как дальше жить» и поговорим откуда вообще такая загогулина.

Аппаратное ускорение глубоких нейросетей: GPU, FPGA, ASIC, TPU, VPU, IPU, DPU, NPU, RPU, NNP и другие буквы

Время на прочтение28 мин
Количество просмотров94K


14 мая, когда Трамп готовился спустить всех собак на Huawei, я мирно сидел в Шеньжене на Huawei STW 2019 — большой конференции на 1000 участников — в программе которой были доклады Филипа Вонга, вице-президента по исследованиям TSMC по перспективам не-фон-неймановских вычислительных архитектур, и Хенга Ляо, Huawei Fellow, Chief Scientist Huawei 2012 Lab, на тему разработки новой архитектуры тензорных процессоров и нейропроцессоров. TSMC, если знаете, делает нейроускорители для Apple и Huawei по технологии 7 nm (которой мало кто владеет), а Huawei по нейропроцессорам готова составить серьезную конкуренцию Google и NVIDIA.

Google в Китае забанен, поставить VPN на планшет я не удосужился, поэтому патриотично пользовался Яндексом для того, чтобы смотреть, какая ситуация у других производителей аналогичного железа, и что вообще происходит. В общем-то за ситуацией я следил, но только после этих докладов осознал, насколько масштабна готовящаяся в недрах компаний и тиши научных кабинетов революция.

Только в прошлом году в тему было вложено больше 3 миллиардов долларов. Google уже давно объявил нейросети стратегическим направлением, активно строит их аппаратную и программную поддержку. NVIDIA, почувствовав, что трон зашатался, вкладывает фантастические усилия в библиотеки ускорения нейросетей и новое железо. Intel в 2016 году потратил 0,8 миллиарда на покупку двух компаний, занимающихся аппаратным ускорением нейросетей. И это при том, что основные покупки еще не начались, а количество игроков перевалило за полсотни и быстро растет.


TPU, VPU, IPU, DPU, NPU, RPU, NNP — что все это означает и кто победит? Попробуем разобраться. Кому интересно — велкам под кат!
Читать дальше →

Rekko Challenge — как занять 2-е место в конкурсе по созданию рекомендательных систем

Время на прочтение6 мин
Количество просмотров11K

Всем привет. Моя команда в Тинькофф занимается построением рекомендательных систем. Если вы довольны вашим ежемесячным кэшбэком, то это наших рук дело. Также мы построили рекомендательную систему спецпредложений от партнеров и занимаемся индивидуальными подборками Stories в приложении Tinkoff. А еще мы любим участвовать в соревнованиях по машинному обучению чтобы держать себя в тонусе.


На Boosters.pro в течении двух месяцев с 18 февраля по 18 апреля проходило соревнование по построению рекомендательной системы на реальных данных одного из крупнейших российских онлайн-кинотеатров Okko. Организаторы преследовали цель улучшить существующую рекомендательную систему. На данный момент соревнование доступно в режиме песочницы, в которой вы можете проверить свои подходы и отточить навыки в построении рекомендательных систем.


alt_text

Читать дальше →

Рекомендации в Okko: как заработать сотни миллионов, перемножив пару матриц

Время на прочтение20 мин
Количество просмотров34K

Rekko — персональные рекомендации в онлайн-кинотеатре Okko


Знакома ли вам ситуация, когда на выбор фильма вы тратите гигантское количество времени, сопоставимое со временем самого просмотра? Для пользователей онлайн-кинотеатров это частая проблема, а для самих кинотеатров — упущенная прибыль.


К счастью, у нас есть Rekko — система персональных рекомендаций, которая уже год успешно помогает пользователям Okko выбирать фильмы и сериалы из более чем десяти тысяч единиц контента. В статье я расскажу вам как она устроена с алгоритмической и технической точек зрения, как мы подходим к её разработке и как оцениваем результаты. Ну и про сами результаты годового A/B теста тоже расскажу.

Рекомендую вам прочитать эту статью

Ближайшие события

Горький урок отрасли ИИ

Время на прочтение5 мин
Количество просмотров53K
Об авторе. Ричард Саттон — профессор компьютерных наук в университете Альберты. Считается одним из основателей современных вычислительных методов обучения с подкреплением.

По итогу 70-ти лет исследований в области ИИ главный урок заключается в том, что общие вычислительные методы в конечном счёте наиболее эффективны. И с большим отрывом. Конечно, причина в законе Мура, точнее, в экспоненциальном падении стоимости вычислений.

Большинство исследований ИИ предполагали, что агенту доступны постоянные вычислительные ресурсы. В этом случае практически единственный способ повышения производительности — использование человеческих знаний. Но типичный исследовательский проект слишком краткосрочен, а через несколько лет производительность компьютеров неизбежно возрастает.

Стремясь к улучшению в краткосрочной перспективе, исследователи пытаются применить человеческие знания в предметной области, но в долгосрочной перспективе имеет значение только мощность вычислений. Эти две тенденции не должны противоречить друг другу, но на практике противоречат. Время, потраченное на одно направление, — это время, потерянное для другого. Есть психологические обязательства инвестировать в тот или иной подход. И внедрение знаний в предметной области имеет тенденцию усложнять систему таким образом, что она хуже подходит для использования общих вычислительных методов. Было много примеров, когда исследователи слишком поздно усваивали этот горький урок, и полезно рассмотреть некоторые из самых известных.
Читать дальше →

Нейронные сети предпочитают текстуры и как с этим бороться

Время на прочтение7 мин
Количество просмотров32K


В последнее время вышло несколько статей с критикой ImageNet, пожалуй самого известного набора изображений, использующегося для обучения нейронных сетей.


В первой статье Approximating CNNs with bag-of-local features models works surprisingly well on ImageNet авторы берут модель, похожую на bag-of-words, и в качестве "слов" используют фрагменты из изображения. Эти фрагменты могут быть вплоть до 9х9 пикселей. И при этом, на такой модели, где полностью отсутствует какая-либо информация о пространственном расположении этих фрагментов, авторы получают точность от 70 до 86% (для примера, точность обычной ResNet-50 составляет ~93%).


Во второй статье ImageNet-trained CNNs are biased towards texture авторы приходят к выводу, что виной всему сам набор данных ImageNet и то, как изображения воспринимают люди и нейронные сети, и предлагают использовать новый датасет – Stylized-ImageNet.


Более подробно о том, что на картинках видят люди, а что нейронные сети

Читать дальше →

Уличная магия сравнения кодеков. Раскрываем секреты

Время на прочтение14 мин
Количество просмотров40K


В этом году исполняется юбилей — 16 лет, как был запущен сайт compression.ru, на котором автор и сотоварищи организуют сравнения видеокодеков и кодеров изображений. За это время были проведены десятки сравнений с отчетами от 23 до 550+ страниц, количество графиков в последнем сравнении перевалило за 7000, а количество разных феерических случаев за это время окончательно превысило все разумные пределы. Поскольку следующая круглая дата (32 года) наступит еще нескоро, есть желание рассказать в честь юбилея малую толику феерического.

Если говорить про кодеки, то не секрет, что большинство сравнений и графиков, которые видит почтеннейшая публика — это продукт отдела маркетинга. В лучшем случае — графики грамотно делали инженеры, а маркетинг только давал добро на публикацию. В худшем случае инженеры вообще не участвовали в их подготовке. К чему тратить время этих занятых людей!

При этом тема сжатия весьма популярна. В сериале «‎Кремниевая долина»‎ стартап главного героя разработал гениальный алгоритм, который в последней серии первого сезона показал невероятное сжатие 3D видео и в итоге теперь миллионы стартаперов (и инвесторов) мира знают, что главное — это чтобы коэффициент Вайсмана был побольше и ещё гения надо найти, а остальное — фигня-вопрос. Чудо будет! Это естественным образом увеличивает ожидание чудес и, конечно (КОНЕЧНО!) эти чудеса радостно демонстрируются компаниями! В том числе с использованием последних достижений уличной магии.

DISCLAIMER: Любые совпадения имен и названий компаний ниже с реальными именами и названиями абсолютно случайны.

Усаживайтесь поудобнее! Обещаем, что к концу рассказа вы сможете показывать подобные фокусы сами, как, впрочем, и раскрывать многие из них. Поехали!
Читать дальше →

Face Anti-Spoofing или технологично узнаём обманщика из тысячи по лицу

Время на прочтение18 мин
Количество просмотров28K

Биометрическая идентификация человека – это одна из самых старых идей для распознавания людей, которую вообще попытались технически осуществить. Пароли можно украсть, подсмотреть, забыть, ключи – подделать. А вот уникальные характеристики самого человека подделать и потерять намного труднее. Это могут быть отпечатки пальцев, голос, рисунок сосудов сетчатки глаза, походка и прочее.



Конечно же, системы биометрии пытаются обмануть! Вот об этом мы сегодня и поговорим. Как злоумышленники пытаются обойти системы распознавания лица, выдав себя за другого человека и каким образом это можно обнаружить.

Читать дальше →

ИИ научился создавать видео с одного кадра. Старые картины теперь можно сделать живыми

Время на прочтение2 мин
Количество просмотров53K


Технология из Гарри Поттера дошла до наших дней. Теперь для создания полноценного видео человека достаточно одной его картинки или фотографии. Исследователи машинного обучения из «Сколково» и центра Samsung AI из Москвы опубликовали свою работу о создании такой системы, вместе с целым рядом видео знаменитостей и предметов искусства, получивших новую жизнь.

Читать дальше →

Подборка датасетов для машинного обучения

Время на прочтение6 мин
Количество просмотров170K
Привет, читатель!

Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие статьи.

Перед тобой статья-путеводитель по открытым наборам данных для машинного обучения. В ней я, для начала, соберу подборку интересных и свежих (относительно) датасетов. А бонусом, в конце статьи, прикреплю полезные ссылки по самостоятельному поиску датасетов.

Меньше слов, больше данных.

image

Подборка датасетов для машинного обучения:


Читать дальше →

Темная сторона хакатонов

Время на прочтение6 мин
Количество просмотров23K


В предыдущей части трилогии я рассмотрел несколько причин для участия в хакатонах. Мотивация узнать много нового и выиграть ценные призы привлекает многих, но часто из-за ошибок организаторов или компаний-спонсоров мероприятие заканчивается неудачно и участники уходят недовольными. Чтобы такие неприятные случаи происходили реже, я написал этот пост. Вторая часть трилогии посвящена ошибкам организаторов.
Читать дальше →