Как стать автором
Поиск
Написать публикацию
Обновить
105.11

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

О пользе технологий больших данных в повседневной жизни

Время на прочтение4 мин
Количество просмотров18K


Среди многих исследователей и разработчиков бытует мнение, что инструменты обработки больших данных в области машинного обучения часто избыточны – всегда можно сделать сэмпл, загнать в память и использовать любимые R, Python и Matlab. Но на практике встречаются задачи, когда даже относительно небольшой объем данных, размером в пару гигабайт, обработать в таком стиле затруднительно – и тут-то и могут помочь те самые технологии «больших данных».

Хорошим наглядным примером такой задачи является задача нашего конкурса SNA Hakathon 2016: дан социальный граф одного миллиона пользователей и их демография. Задача — найти скрытые связи в этом графе. Размер предоставленного графа всего два гигабайта в GZip и, казалось бы, применение технологий больших данных здесь не оправданно, но это только на первый взгляд.

Одной из самых важных «фич» в задаче поиска скрытых связей в социальном графе является количество общих друзей. И в расчетном плане это очень тяжелая «фича» — количество узлов, между которыми существуют пути длины 2, на несколько порядков больше, чем количество прямых связей в графе. В результате при расчете граф «взрывается» и из разрежённой матрицы на два гигабайта превращается в плотную терабайтную матрицу.

Казалось бы, для решение этой задачи впору поднимать небольшой кластер, но спешить не стоит: взяв на вооружение принципы обработки больших данных и соответствующие технологии, задачу можно решить и на обычном ноутбуке. Из принципов мы возьмем «разделяй и властвуй» и «руби хвосты сразу», а в качестве инструмента — Apache Spark.
Читать дальше →

Специализация по машинному обучению на Coursera от Физтеха и Яндекса

Время на прочтение7 мин
Количество просмотров71K
В начале года на Coursera открылся курс по машинному обучению от Яндекса и Вышки, о котором мы уже рассказывали. К моменту старта на него записались 14000 человек. Через час после открытия пользователи создали канал в Slack, где стали обсуждать программу. Сейчас слушателей уже 21000.



9 февраля на платформе стала доступна запись на специализацию по машинному обучению, которая разрабатывается нашими специалистами уже совместно с Физтехом. Она устроена таким образом, чтобы помочь слушателям плавно погрузиться в тему.

Специализация «Машинное обучение и анализ данных» состоит из пяти курсов и работой над собственным проектом. Обучение будет длиться несколько месяцев. Записаться на него можно до 19 февраля. Если вы не успеете это сделать, с 14 марта можно будет записаться на второй поток.

Авторы курса — сотрудники Яндекса, специалисты Yandex Data Factory, которые преподают на Физтехе. Константин Воронцов тоже среди них. Мы попросили некоторых из коллег рассказать, кому может быть полезна специализация и для чего она нужна. Также под катом — программа всех курсов.
Читать дальше →

Глубокое обучение в гараже — Возвращение смайлов

Время на прочтение5 мин
Количество просмотров13K
Пример работы системы
Это третья статья из серии про определение смайла по выражению лица.

Глубокое обучение в гараже — Братство данных
Глубокое обучение в гараже — Две сети
Глубокое обучение в гараже — Возвращение смайлов

Так что же со смайлами?


Фух, ну наконец, детекция лиц работает, можно учить сеть распознавания смайла. Только вот на чем учить? Открытых наборов данных нет. А из того, как долго в предыдущей части я добирался до, собственно, обучения моделей вы уже должны были понять, что в глубоком обучении данные решают все. И их нужно много.
Покажите девушек!

Глубокое обучение в гараже — Братство данных

Время на прочтение10 мин
Количество просмотров26K
Пример работы системы
Вы тоже находите смайлы презабавнейшим феноменом?
В доисторические времена, когда я еще был школьником и только начинал постигать прелести интернета, с первых же добавленных в ICQ контактов смайлы ежедневно меня веселили: ну действительно, представьте, что ваш собеседник корчит рожу, которую шлет вам смайлом!

С тех пор утекло много воды, а я так и не повзрослел: все продолжаю иногда улыбаться присланным мне смайлам, представляя отправителя с глазами разного размера или дурацкой улыбкой на все лицо. Но не все так плохо, ведь с другой стороны я стал разработчиком и специалистом в анализе данных и машинном обучении! И вот, в прошлом году, мое внимание привлекла относительно новая, но интересная и будоражащая воображение технология глубокого обучения. Сотни умнейших ученых и крутейших инженеров планеты годами работали над его проблемами, и вот, наконец, обучать глубокие нейронные сети стало не сложнее "классических" методов, вроде обычных регрессий и деревянных ансамблей. И тут я вспомнил про смайлы!

Представьте, что чтобы отправить смайл, вы и вправду могли бы скорчить рожу, как бы было круто? Это отличное упражнение по глубокому обучению, решил я, и взялся за работу.

Глубокое обучение в гараже — Братство данных
Глубокое обучение в гараже — Две сети
Глубокое обучение в гараже — Возвращение смайлов
Хочу картинок!

AI, BigData & HPC Digest #4

Время на прочтение2 мин
Количество просмотров10K
alt

Хабр, привет!

Команда FlyElephant подготовила для Вас новый дайджест, включающий в себя подборку ссылок на интересные материалы по направлениям: искусственный интеллект, большие данные и высокопроизводительные вычисления.
Читать дальше →

Знакомство с Apache Spark

Время на прочтение8 мин
Количество просмотров128K
Здравствуйте, уважаемые читатели!

Мы наконец-то приступаем к переводу серьезной книги о фреймворке Spark:



Сегодня мы предлагаем вашему вниманию перевод обзорной статьи о возможностях Spark, которую, полагаем, можно с полным правом назвать слегка потрясающей.

Читать дальше →

Рекомендации на потоке

Время на прочтение7 мин
Количество просмотров13K
Всем привет!

Сегодня мы расскажем о том, как с помощью потоковой обработки данных можно увеличить качество рекомендаций и снизить время отклика всей рекомендательной системы в 5 раз. Речь пойдет об одном из наших клиентов – сервисе потокового видео Rutube.


Читать дальше →

Как уменьшить количество измерений и извлечь из этого пользу

Время на прочтение10 мин
Количество просмотров54K
Сначала я хотел честно и подробно написать о методах снижения размерности данных — PCA, ICA, NMF, вывалить кучу формул и сказать, какую же важную роль играет SVD во всем этом зоопарке. Потом понял, что получится текст, похожий на вырезки из опусов от Mathgen, поэтому количество формул свел к минимуму, но самое любимое — код и картинки — оставил в полном объеме.
Читать дальше →

Хабра-граф, -сообщества и куда же делась вся карма

Время на прочтение7 мин
Количество просмотров29K

Вступление


Cегодня мы вместе с анализом графов, data mining, subgroup discovery и всеми веселыми штуками взглянем на Хабр. Весь код и данные прилагаются — каждый может взглянуть на них самостоятельно, легко повторить рассчеты из статьи и найти что-то интересное самостоятельно.




(это не просто картинка для привлечения внимания, а — граф связей ~45000 пользователей Хабра по тому, кто на кого подписан; размер вершины пропорционален числу подписчиков; все картинки кликабельны; подробности далее)



Обсуждаемые проблемы возникли, конечно же, далеко не вчера, но некоторые их аспекты кажутся мне достаточно новыми и поэтому достойными дискуссии, основанной на непредвзятых и репрезентативных данных. Например в комментариях этой статьи, увидел интересное утверждение:

Тут проблема в том, что на всем хабре за сегодня не насчитать больше 50-80 человек, которые вообще могут голосовать. У 90% пользователей карма просто ниже 5. Как итог оценивают комментарии и статьи только избранные. Это как жюри выходит такое.

И решил, что стоить его сформулировать в виде гипотезы и проверить:

Q1: Правда ли, что Хабр превратился в жюри-based сообщество, где два с половиной человека голосуют за статьи?

Вот в этой статье к нам вернулись "железные" Хабы и стало интересно, а как вообще представлены разные сообщества внутри Хабра? Формулируем в виде гипотезы:

Q2: Как сегментировано сообщество, или проще говоря сколько у нас здесь групп по интересам и соотвествуют ли они имеющимся хабам?

Последнее, но не менее интересное наблюдение, что активность на Хабре упала (по данным Хабра-пульса и моим субъективным наблюдениям), что даже решили ввести аккаунты "read & comment". Поэтому решил оценить активность сообщества и продумать, как информация о структуре сообщества может нам помочь:
Q3: Насколько активно сообщество и как нам может помочь структура внутренних групп?


За подробностями добро пожаловать под кат.

Структура статьи

Читать дальше →

Все погодные аномалии 2015 года за 8 минут

Время на прочтение1 мин
Количество просмотров18K


Привет читатели и почитатели Хабра!

На днях Европейская организация по эксплуатации метеорологических спутников (EUMETSAT) совместно с коллегами из метеорологических агентств Японии и США опубликовала видео, которое вобрало все данные наблюдений за погодой в течение ушедшего 2015 год.

Два полушария, 12 месяцев и 8 минут отличной визуализации данных ждут Вас под катом!
Ураганы, шторма и солнечные дни

Census Analyzer 1.0: новый инструмент для анализа данных

Время на прочтение3 мин
Количество просмотров16K
Привет, Хабр!

Мы в компании JetBrains только что выпустили Census Analyzer — новое веб-приложение для визуализации и анализа данных. Попробуйте его и расскажите нам, что вы думаете!

Census Analyzer является прототипом, “preview”-версией, призванной познакомить пользователей с принципами работы более глобального продукта по анализу данных, который пока в разработке. Но уже сейчас с помощью Census Analyzer вы можете в облаке анализировать данные Бюро переписи населения США (US Census Bureau), работать с графиками и сводными таблицами, составлять графические отчеты, публиковать их и делиться ими в сети.

Давайте посмотрим, чем интересен Census Analyzer.

image
Читать дальше →

TensorFlow и логистическая регрессия

Время на прочтение3 мин
Количество просмотров19K
После непродолжительной, но весьма кровавой войны мне все-таки удалось откомпилировать и собрать TensorFlow для GPU с CUDA capability=3.0. Теперь можно погрузиться в него основательно, потому что машинное обучение с GPU — это быстро, легко и приятно, а без GPU — порой лишь огромная потеря времени.

Попробуем запрограммировать самую простейшую логистическую регрессию.
Читать дальше →

Используем Apache Spark как SQL Engine

Время на прочтение4 мин
Количество просмотров25K


Привет, Хабр! Мы, Wrike, ежедневно сталкиваемся с потоком данных от сотен тысяч пользователей. Все эти сведения необходимо сохранять, обрабатывать и извлекать из них ценность. Справиться с этим колоссальным объёмом данных нам помогает Apache Spark.

Мы не будем делать введение в Spark или описывать его положительные и отрицательные стороны. Об этом вы можете почитать здесь, здесь или в официальной документации. В данной статье мы делаем упор на библиотеку Spark SQL и её практическое применение для анализа больших данных.

Читать дальше →

Ближайшие события

FlyElephant как инструмент для вычислений на C++, R, Python или Octave

Время на прочтение5 мин
Количество просмотров11K

Приветствую всех!

Сегодня я расскажу о возможностях платформы FlyElephant для ученых и инженеров, которые в своей работе проводят различные вычисления на C++, R, Python или Octave. Это могут быть научные расчеты, анализ данных, моделирование или другие задачи. 22 января я буду проводить вебинар “Введение в FlyElephant”, на котором детально расскажу о платформе FlyElephant, а сегодня в общих чертах познакомлю вас с ней и покажу процесс проведения расчетов.

FlyElephant — это платформа, которая предоставляет ученым готовую вычислительную инфраструктуру для проведения расчетов, автоматизирует рутинные задачи и позволяет сосредоточиться на основных вопросах исследований.
Читать дальше →

Параллельные алгоритмы для обработки BigData: подводные камни и непростые решения

Время на прочтение9 мин
Количество просмотров21K
Эта публикация написана по материалам выступления AlexSerbul на осенней конференции BigData Conference.

Большие данные — тема модная и востребованная. Но многих по-прежнему отпугивает избыток теоретических рассуждений и некоторый недостаток практических рекомендаций. В этом посте я хочу отчасти заполнить этот пробел и рассказать об использовании параллельных алгоритмов для обработки больших данных на примере кластеризации товарного каталога из 10 млн позиций.
Читать дальше →

Новые инструменты (Octave и Scilab) во FlyElephant и анонс вебинаров

Время на прочтение2 мин
Количество просмотров5K


Команда FlyElephant поздравляет всех с наступившим Новым Годом. Мы начинаем этот год с расширения списка инструментов, вебинаров и формирования сообщества вокруг проекта.

FlyElephant — это платформа, которая предоставляет ученым готовую вычислительную инфраструктуру для проведения расчетов, автоматизирует рутинные задачи и позволяет сосредоточиться на основных вопросов исследований.

Для пользователей платформы FlyElephant стали доступны Octave и Scilab, таким образом полный список поддерживаемых языков и инструментов следующий: GCC (с поддержкой OpenMP), R, Python (v2 & v3), Octave и Scilab. Для участников программы бета-тестирования стал доступен следующий инструментарий: Java (v7 & v8), Julia, OpenFOAM, GROMACS и Blender. Если Вы еще не являетесь пользователем платформы FlyElephant, то зарегистрироваться можно здесь. В честь Нового Года Вы можете пополнить свой счет на $300 введя в Личном кабинете специальный промо-код: 195708679772.
Читать дальше →

Spark local mode: обработка больших файлов на обычном ноутбуке

Время на прочтение3 мин
Количество просмотров24K
image
Всем привет.
4 января вышла новая версия Apache Spark 1.6 с bug fix новыми возможностями обработки больших данных. На Хабре написано немало статей по использованию этого инструмента от введения до опыта использования в проектах. Spark работает на большинстве операционных систем и его можно запускать в локальном режиме даже на обычном ноутбуке. Используя простоту настройки Spark в этом случае грех не воспользоваться основными функциям. В этой статье мы посмотрим как на ноутбуке быстро настроить обработку большого файла (больше оперативной памяти компьютера) с помощью обычных SQL-запросов. Это позволит делать запросы даже неподготовленному пользователю. Дополнительное подключение iPython (Jupyter) notebook позволит составлять полноценные отчеты. В статье разобран простой пример обработки файла, другие примеры на Python есть тут.
Читать дальше →

AI, BigData & HPC Digest #3

Время на прочтение2 мин
Количество просмотров7.8K


Привет, Хабр!

Наша команда FlyElephant хочет поздравить всех с наступающим Новым Годом, пожелать всего самого лучшего и успешной реализации всех задуманных проектов в предстоящем году, а чтобы на выходных было что почитать, публикуем свежий номер дайджеста. Сегодня в выпуске традиционная подборка интересных ссылок на новости и материалы по направлениям: искусственный интеллект, большие данные и высокопроизводительные вычисления.

14-го января мы проведем вебинар на тему "Введение в машинное обучение", на котором поговорим об истории и основных понятиях машинного обучения. Рассмотрим популярные задачи/алгоритмы машинного обучения, а также запустим их примеры при помощи платформы FlyElephant и узнаем как возможно использовать данную платформу для решения задач искусственного интеллекта. Зарегистрироваться на вебинар можно здесь.
Читать дальше →

Numpy и многопроцессорность

Время на прочтение4 мин
Количество просмотров22K
Сейчас уже многие используют библиотеку numpy в своих python-программах, поскольку она заметно ускоряет работу с данными и выполнение математических операций. Однако во многих случаях numpy работает в разы медленнее, чем она может… потому что использует только один процессор, хотя могла бы использовать все, что у вас есть.
Читать дальше →

Hub AI&BigData meetup #1

Время на прочтение1 мин
Количество просмотров2.7K


26 декабря наша команда FlyElephant примет участие во встречи Hub AI&BigData meetup, посвященной большим данным и искусственному интеллекту. Мероприятие будет проходить в Одессе и начнется в 11.00. Для всех, кто не сможет прийти, будет организована онлайн-трансляция.
Читать дальше →

Вклад авторов