C++26 — встреча ISO в Хагенберге

В этот раз прорабатывались следующие большие темы:
- std::hive
- Constexpr, ещё больше constexpr
- Безопасность, контракты, hardening, профили, UB и std::launder
- Relocate
- #embed

Типизированный язык программирования



Некоторое время назад я написал несколько статей о различных трюках, применявшихся в операционной системе DOS, чтобы вписаться в те жёсткие лимиты памяти, которые действовали в реальном режиме на архитектуре x86. Постоянно возникал и оставался без ответа один вопрос: а каковы были различные «модели», которые предлагались компиляторами тех времён? Взгляните, как выглядело меню для генерации кода в Borland Turbo C++.
Tiny (крошечный), small (маленький), medium (средний), compact (компактный), large (большой), huge (огромный)… Что означают эти опции? Каковы их эффекты? Ещё важнее… а так ли важен весь этот антиквариат сегодня, в мире 64-разрядных машин и гигабайтных ОЗУ? Чтобы ответить на этот вопрос, сделаем небольшой обзор архитектуры 8086 и тех двоичных форматов, которые поддерживались в DOS.

Многие организации с богатой историей всё ещё завязаны на устаревшие внутренние системы Internet Explorer, включая ActiveX‑модули, работающие только в его окружении. Такие решения сложно и дорого переписать, особенно в финансовом секторе, поэтому компании вынуждены поддерживать несколько браузеров одновременно — для новых сервисов и старых критически важных систем.
В статье расскажем, как Яндекс Браузер для организаций позволяет запускать и современные веб‑приложения, и наследие эпохи IE в одном окне, помогает справляться с legacy‑наследием и облегчает переход к актуальным технологиям.

C и C++ не имеют встроенной сборки мусора, поэтому разработчик сам решает, как и когда выделять и освобождать память. Мы, конечно, можем покивать в сторону STL, сокрытия аллокаций в контейнерах, но от этого они никуда не денутся. Просто если раньше приходилось думать про выделенный кусок памяти, понимать, как он скажется на времени фрейма, помнить, что его надо удалить (а может, не надо и стоит оставить на следующий фрейм), то теперь всё заворачивается в сахарные контейнеры и разработку в стиле STL-blin-vse-sterpit. STL-то может и стерпит, и даже как-то будет ворочаться, однако не стоит полагаться исключительно на системный аллокатор, бездумно вызывая new или malloc для каждого запроса памяти. Вы ведь понимаете, что std::vector посреди цикла или горячей функции — это плохая идея?
Кроме того, такая практика приводит к ожидаемым проблемам с производительностью даже в обычных приложениях, чего уж говорить про высоконагруженные системы или игры, которые претендуют на что-то быстрее 20 фреймов в секунду.
Пытаться оптимизировать код, который использует системные аллокаторы, — всё равно что сгребать листья в кучу ветреным днём: куча, конечно, сгребается, но постоянно приходится махать грабельками, чтобы она оставалась на одном месте. Даже если выделения памяти происходят последовательно, друг за другом, вот прям без всяких перерывов, нет гарантии, что эти участки будут расположены хотя бы близко друг к другу. В результате при обработке таких данных процессору приходится прыгать по разным участкам памяти, теряя такты просто на поиск данных вместо того, чтобы работать с ними.
Я отнюдь не призываю вас встать на путь ручного управления памятью, ибо он будет усеян ловушками, граблями и чреват утечками. Но разработчик в итоге оказывается перед выбором: либо довериться системному аллокатору и столкнуться с проблемами вроде размазанного перфа, когда вроде и код написан правильно, модно и молодежно, но отчего-то работает небыстро, либо взять всё в свои руки, создавая собственные механизмы выделения и освобождения ресурсов.
Ребята из HFT, Database, Automotive и Embedded-систем наверняка могут рассказать немало интересных историй про оптимизацию new/delete. Давайте я расскажу немного про разные аллокаторы в играх?

Случайно попалась довольно старая статья 2018 года с простым и понятным описанием категорий значений в C++. До неё всякие glvalues, prvalues, xvalues были малопонятными для меня.
cppreference.com просто перечисляет категории, и это не добавляет понимания, всё кажется чрезмерно излишним.
На stackoverflow.com есть 24 поста разной степени ценности, что только добавляет недоумения от сложности этой темы.


Я хочу, чтобы вы задали себе один вопрос и честно на него ответили. Когда в последний раз вы получали настоящее удовольствие от программирования? Оглядываясь назад, я понимаю, что не испытывал подобных ощущений, наверное… уже лет десять. Удовольствия у меня не было ни от JavaScript, ни от Python, ни от Ruby или C — ни от чего. Когда я говорю «удовольствие» — я имею в виду ощущения человека, которого во время работы над неким проектом переполняет искренний восторг. Этот человек постоянно ловит себя на такой мысли: «Ох, ну какая ж круть. Поверить не могу, что моя безумная идея и правда сработала!».
Например, я писал маленькую игру-«рогалик». У меня была такая идея: «Готов поспорить, что у меня получиться воспользоваться этим вашим алгоритмом Дейкстры для соединения комнат при генерировании карты, сначала инвертируя карту, а потом его запуская. Вероятно, мне удастся прокопать отличнейшие туннели между комнатами». То было благословенное время, когда я пытался справиться с этой задачей, и при этом не чувствовал, что C++ мне мешает. Мне тогда удалось решить эту задачу, попутно многому научившись. Потом у меня появилась такая мысль: «Интересно, получится мне взять пользовательский интерфейс, сделанный на FTXUI, и просто напрямую его отрендерить в окно визуализации SFML?». Как и следовало ожидать, у меня всё отлично получилось. И хотя это было не так уж и сложно, я по ходу дела много узнал о том, как в C++ обрабатывается юникод. Ни одна из этих задач лёгкой не была, но все их, в принципе, можно было решить, и я не могу напридумывать себе достаточно много «подводных камней», которыми C++ мог бы помешать мне сделать то, что я хочу. Это — то, что я называю «удовольствием».


Моим первым языком программирования был ActionScript. Написание кода для Macromedia Flash максимально далеко от голого железа, и эта специфика работы глубоко засела в моём сознании. В результате меня интересовали преимущественно высокоуровневые языки для веб-программирования. Низкоуровневые же казались непостижимыми. Со временем я постепенно из разных источников узнавал о них всё больше, но это моё убеждение оставалось прежним. Низкоуровневые языки пугают, и машинный код подтверждал это наглядно. Когда я обращался к Google с запросом «понятный машинный код», то результат выдачи чаще представлял нечто пугающее и отталкивающее, нежели полезное для обучения.
В конечном итоге я решил, что для достижения поставленных целей мне этот страх необходимо преодолеть. И результат приложенных усилий оказался для меня неожиданным.
Машинный код вовсе не страшен. Если вы можете обеспечить, чтобы документ JSON соответствовал схеме JSON, то без проблем сможете писать машинный код.

Привет! На связи Антон Полухин из Техплатформы Городских сервисов Яндекса. Сегодня я расскажу о ноябрьской встрече Международного комитета по стандартизации языка программирования C++, в которой принимал активное участие. Это была первая из встреч, связанных с «полировкой» C++26. Другими словами, новые фичи C++ пока не появятся — комитет должен только проработать замечания всех стран-участников, включая наши замечания от России.
Однако от плана немного отступили и втащили некоторые новинки как ответы на пожелания участников комитета: std::integer_sequence оброс новой функциональностью, а std::format научился в constexpr.
Помимо этого, поправили множество багов, перековыряли связку Hardening + Contracts, внесли улучшения во многие части стандартной библиотеки.

В Deckhouse Prom++ мы переписали ядро хранения и обработки горячих данных на C++, при этом вся оркестрация и периферия остались в Prometheus на Go, что позволило сохранить полную совместимость с Prometheus. Для частых вызовов кода C++ мы использовали механизм CGo, однако первые тесты показали, что производительность CPU практически не улучшилась из-за его медлительности. В итоге мы переписали CGo, создав собственный механизм вызова.
В статье разберём, что такое CGo и почему он такой медленный, сделаем простейший собственный механизм CGo-вызова и доведём этот механизм до полноценного решения.

Привет, Хабр! Меня зовут Кирилл Колодяжный, я работаю в YADRO и продолжаю изучать машинное обучение на С++. Я уже писал, как реализовать модели для распознавания лиц на фото и для поиска объекта в пространстве с помощью computer vision. Ссылки на материалы ищите в конце статьи.
Сегодня затрону «математическую» тему и расскажу о реализации сверток: что это за операция и какие есть алгоритмы для вычисления. Приведу простые примеры с кодом, чтобы вы могли опробовать решения.
У статьи будет вторая часть: про особенности реализации одного из этих алгоритмов с использованием CUDA в рамках фреймворка PyTorch и про то, как адаптировать его под свои задачи.

Существует довольно много распространённых «мудростей» о разработке игр на C++, различных обрядах и видах магии. И как это часто бывает с подобными сакральными знаниями, при внимательном осмотре - у части действительно есть право на жизнь, часть можно отправить в Каирский музей отбирать славу у мумий, а часть вообще оказывается родом из чужой реальности, и работать как предполагалось отказывается. Но это не мешает некоторым компаниям относиться к таким советам как к скрижалям, бережно принесённым с великой горы совещаний. Новым сотрудникам их передают почти с торжественностью обряда посвящения: «Так делали наши предки, так делаем и мы».
В других конторах, обычно молодых и индерзких, могут использовать различной длины приборы для наложения или заниматься плюшкинством и тащить в проект все что плохо или бесплатно лежит, обмазывая и без того непростую архитектуру толстым слоем абстракций, тулов и фреймворков, пока оно вообще не перестает работать. В такой атмосфере уже трудно разобраться, работает ли мудрость, или её просто утопили под десятком слоёв инженерного творчества. Поэтому к любым "истинам" лучше относиться спокойно и проверять их на практике, а не по степени древности. Собственно по любому пункту миф это или народная мудрость можете отписываться в комментариях, будет интересно услышать ваше мнение. Получился лонгрид, так что заваривайте чаю, ну или чего покрепче, картинок не будет... почти, а еще получилось, что кони, люди и мухи слеплены в большую котлету и размышления о разработке и плюсах перемежаются со студийными суевериями, кто был в студии, тот поймет.

Отладка больших CMake-проектов часто превращается в боль. Уходит не один час на то, чтобы с помощью message() и бубна найти проблему. Но существуют более удобные и эффективные способы. Например, отладчик, который позволяет пошагово пройтись по CMake-скриптам и посмотреть значение переменных. Или профилировщик, показывающий последовательность вызовов и время их выполнения. Как их использовать? Читайте в статье.

В этой статье мы рассмотрим классический конкурентный кольцевой буфер и обсудим, как его можно оптимизировать для повышения производительности. Я покажу вам, как существенно улучшить этот показатель от 5,5 миллионов элементов в секунду до 112 миллионов элементов в секунду — и эти показатели выше, чем в реализациях Boost и Folly. Если вам требуется готовая реализация со всеми этими оптимизациями, посмотрите мою библиотеку SPSCQueue.h.
Кольцевой буфер также называется очередью «один производитель — один потребитель» (SPSC). В ней не бывает ожидания (и, соответственно, не бывает блокировок), это конкурентный примитив. Такая структура данных находит множество вариантов применения, и здесь я рассмотрю передачу сетевых пакетов между сетевым контроллером и драйверами операционной системы. Основная задача, решаемая при этом — выполнение событий ввода/вывода в относительно новом асинхронном API io_uring.

Стандартная библиотека C++ содержит множество классов и функций, которые легко интегрируются в проект, безопасны и протестированы на множестве кейсов. Однако за удобность и всеядность приходится платить производительностью. В играх, если производительность сразу не стоит на первом месте, то к концу проекта вы получаете такой технический долг, что проще бывает всё выкинуть и начать заново. Прямолинейное использование стандартной библиотеки в большинстве случаев, когда нужен производительный и эффективный код, я сейчас не только про игры, оказывается не лучшим выбором.
Примеры ниже завершают серию статей, в которой я постарался собрать интересные моменты использования разных структур данных, используемых при разработке игр, их расширений и возможностей для улучшения.
Статья рассчитана на читателей, которые не являются гуру C++ или знатоками тонкостей языка, но в целом знакомы с языком и его идеями, хотя знание ассемблера x86 не требуется, я буду прикладывать ссылки на примеры кода quickbench, чтобы объяснить, почему даю те или иные советы.
Иногда я тут буду ужасы рассказывать, но большинство этих случаев мешало нормальной работе игр в проде, так что пришлось относиться к ним с уважением.

Я знаю многих программистов и руководителей в IT компаниях, которые недолюбливают математиков и в частности считают их далёкими от жизни идиотами из-за их утверждений в духе "нельзя отсортировать последовательность быстрее, чем за nlogn" -- ведь это очевидным образом неверно, есть же сортировка подсчетом и radix sort. Нюанс в том, что описанное выше -- это распространённая некорректная трактовка одной из ключевых теорем об алгоритмах сортировок, корректное утверждение выглядит так: "не существует алгоритма, который бы гарантированно находил перестановку n элементов, приводящую к возрастающему порядку, быстрее чем за nlogn используя только операции попарного сравнения". В этом утверждении больше слов, оно более сложно в плане когнитивного восприятия, ключевой момент обозначил жирным шрифтом, чувствуете разницу?
В статье хочу рассказать об этой теореме и ещё о двух, на которые я наткнулся когда вел занятия по информатике в 9-11 классах будучи студентом старших курсов. Эти теоремы для меня были удивительным открытием, радовался вне себя когда вывел сам одну из них - её я не встречал ни в одном учебнике по информатике. В последствии все три теоремы были найдены в недрах Кнута, но чёрт побери, их поиск был сложнее, чем вывод!
Если я ещё не убедил Вас прочитать статью, то вот моя последняя попытка: в статье объясню почему пузырёк -- это бесполезная фигня, но внезапно практически также работающая сортировка вставками -- это супер важная сортировка, являющаяся частью std::sort в MSVC, GCC и Clang. Расскажу, каким интересным свойством оптимальности обладает сортировка выбором, являющаяся в теории такой же неэффективной как пузырёк.
Заметил недостаток качественных статей по атомикам. Сам когда-то столкнулся с тем, что хотел прочитать статью, где простым и понятным языком рассказывается об этом, но, к сожалению, найти не смог.
