Эти материалы затрагивают как теоретические аспекты работы с данными, так и практические — направленные на создание алгоритмов и написание программ.

Облекаем данные в красивую оболочку
Визуализация данных — это всегда некоторое графическое построение, которое помогает исследовать имеющиеся данные. Мы строим геометрическую модель и изменяем её, чтобы представить разные аспекты данных. Также мы сталкиваемся с ограничением, которые накладывает визуальное восприятие, заключающемся в том, что размерность визуализации не может быть больше двух. Все доступные графические средства двумерны: лист бумаги или экран монитора.
На примере диаграмм для одномерных данных посмотрим, как строится геометрическая модель, как она модифицируется, и как проявляется размерность данных и визуализации.
В этом посте речь пойдет о том, как я восстанавливал демографические данные для регионов Дании, где после реформы территориального устройства 2007 года официальной гармонизации данных не проводилось. Это лишь небольшая часть гармонизации евростатовских данных, которую я выполнил в рамках своего phd проекта. Пост сперва опубликован в моем англоязычном блоге и в блоге Demotrends. Думаю, что он может быть интересен далеко не только демографам.
NUTS расшифровывается как Nomenclature of Territorial Units For Statistics. Это стандартизированная система административно-территориального деления, принятая странами Евросоюза. История вопроса уходит в 1970-е, когда родилась идея сделать регионы различных стран Европы сопоставимыми. В более или менее законченном и широко употребимом виде система появилась лишь на рубеже веков. Существуют три основных уровня NUTS (см. рис. 1), и наиболее распространенным в региональном анализе оказывается NUTS-2.
Рисунок 1. Иллюстрация принципа выделения регионов NUTS различного иерархического уровня
Всем привет! Это блог компании "Техносерв". В процессе производства на проектах, которые мы выполняем, рождаются интересные технологические кейсы. Их скопилось такое количество, что мы решили начать делиться ими с миром. И да, это наша первая публикация.
Честь начать блог выпала мне, и я пишу о том, что мне близко и любимо: о геоинформационных технологиях. Я работаю в департаменте Больших Данных, где занимаюсь разработкой высоконагруженных геоинформационных систем и сервисов на базе движков для распределенных вычислений. О высоких материях мы еще поговорим, а сегодня плавно начнем погружение в ГИС.
Все чаще и чаще у аналитиков данных (или как еще их называют — Data Scientist) появляется потребность в визуализации данных на карте. Какой инструмент сейчас считается наиболее удобным для работы аналитика? Конечно же, тетрадки! До последнего времени возможностей по визуализации геоданных было не так много. Можно было делать статические растры в matplotlib, иногда можно было добавлять даже базовые карты. Интересной оказалась библиотека для работы с Leaflet, где можно открывать geojson-файлы. Сегодня же я хочу рассказать об ArcGIS API for Python от компании Esri.
Эта статья будет полезна как аналитикам, желающим изучить примеры работы с ГИС, так и картографам и ГИС-специалистам, которым интересно попробовать себя в написании кода.
Описывая участие в проекте по модернизации VoIP оператора связи Часть 1 и Часть 2, одной из задач, которая выпала из поля зрения, было создание унифицированного инструмента для визуализации и мониторинга работы сервера Asterisk. По сути, после выхода из данного проекта, навязчивая идея привести отображение информации Asterisk к более удобному виду вылилась в проект создания прототипа унифицированной виртуальной файловой системы, объединяющей возможности всех разрозненных инструментов доступных в Asterisk.
Думаю что многие из администраторов, которые имели дело с Asterisk, зачастую удивлялись тому количеству различных команд, при помощи которых из Asterisk можно получать данные. Речь пойдёт об учётных записях для абонентских устройств, пользователях для аутентификации, каналах, а также о нестандартном применении виртуальных файловых систем.
Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE. Есть и видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).
UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.
Сейчас статья уже будет существенно длиннее. Готовы? Поехали!
Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.