Обновить
88.3

Обработка изображений *

Работаем с фото и видео

Сначала показывать
Порог рейтинга
Уровень сложности

Распознавание источников освещения на картах окружения

Время на прочтение6 мин
Охват и читатели3.4K
image

В этой статье представлена реализация на Python алгоритма распознавания источников освещения на картах окружения (LDR или HDR) при помощи равнопромежуточной проекции (equirectangular projection). Однако после внесения незначительных изменений её также можно использовать с простыми фоновыми изображениями или кубическими картами. Примеры возможного применения алгоритма: программы трассировки лучей, в которых требуется распознавать первичные источники освещения для испускания из них лучей; в растеризованных рендерерах он может применяться для отбрасывания теней, использующих карту окружения; кроме того, алгоритм также можно применять в программах устранения засветов, например в AR.

Алгоритм состоит из следующих этапов:

  1. Снижение разрешения исходного изображения, например, до 1024.
  2. Преобразование изображения в яркость (luminance), при необходимости с размытием изображения.
  3. Применение метода квази-Монте-Карло.
  4. Преобразование из сферических координат в равнопромежуточные.
  5. Фильтрация сэмплов на основании яркости соседа.
  6. Сортировка сэмплов на основании их яркости.
  7. Фильтрация сэмплов на основании евклидовой метрики.
  8. Слияние сэмплов при помощи алгоритма Брезенхэма.
  9. Вычисление позиции кластера освещения на основании его яркости.

Существует множество алгоритмов снижения разрешения изображений. Билинейная фильтрация — самый быстрый или простой в реализации, к тому же он лучше всего подходит в большинстве случаев. Для преобразования яркости и в LDR-, и HDR-изображениях можно использовать стандартную формулу:

  lum = img[:, :, 0] * 0.2126 + img[:, :, 1] * 0.7152 + img[:, :, 2] * 0.0722

Дополнительно можно применить к изображению яркости небольшое размытие, например, в 1-2 пикселя для изображения разрешением 1024, для устранения всех высокочастотных деталей (в частности, вызванных снижением разрешения).
Читать дальше →

Погружение в свёрточные нейронные сети. Часть 5 / 10 — 18

Время на прочтение27 мин
Охват и читатели29K

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.



Выход новых лекций запланирован каждые 2-3 дня.

Читать дальше →

Инженер Amazon создал блокирующее устройство с ИИ, которое не пускает в дом кота с уличной добычей

Время на прочтение2 мин
Охват и читатели37K

Инженер Amazon Бен Хэмм разработал умный блокиратор, который не дает его коту по кличке Метрик приносить внутрь дома пойманных охотничьими лапками и зубками и по факту уже мертвых птиц и крыс.
Читать дальше →

Автоматическая сегментация дыхательных органов

Время на прочтение8 мин
Охват и читатели9.3K

Ручная сегментация легких занимает около 10 минут и требуется определенная сноровка, чтобы получить такой же качественный результат, как при автоматической сегментации. Автоматическая сегментация занимает около 15 секунд.


Я предполагал, что без нейронной сети удастся получить точность не выше 70%. Также я предполагал, что морфологические операции – это только подготовка изображения к более сложным алгоритмам. Но в результате обработки тех, хоть и немногочисленных 40 образцов томографических данных, что есть на руках, алгоритм выделил легкие без ошибок, причём после теста на первых пяти случаях алгоритм уже не претерпевал значительных изменений и с первого применения правильно отработал на остальных 35 исследованиях без изменения настроек.


Также нейронные сети имеют минус – для их обучения нужны сотни обучающих образцов лёгких, которые придётся размечать вручную.


Читать дальше →

Погружение в свёрточные нейронные сети. Часть 5 / 1 — 9

Время на прочтение19 мин
Охват и читатели37K

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.



Выход новых лекций запланирован каждые 2-3 дня.

Читать дальше →

Ищем астероиды — проект «Hubble Asteroid Hunter»

Время на прочтение2 мин
Охват и читатели4.1K


Центр малых планет (Minor Planet Center, MPC) Смитсоновской астрофизической обсерватории (SAO) и аэрокосмическое агентство NASA запустили проект «Hubble Asteroid Hunter», с помощью которого любой глазастый пользователь компьютера или планшета может помочь астрономам найти треки новых астероидов и внести свой вклад в процесс обучения нейронной сети.
Читать дальше →

У цветового треугольника не два, а один угол

Время на прочтение16 мин
Охват и читатели43K
Как увидеть цвет, которого в природе не бывает?

image


Четыре года назад на Хабре был пост с интересным и полезным видео «Как устроен цвет». Лектор — Дмитрий Николаев, заведующий сектором зрительных систем ИППИ РАН.

Я сделал расшифровку (в меру своего понимания материала), потому что считаю и тему важной и подачу — отличнейшей. Пока набирал текст, чуть не поменял своё φ(λ). Слово спикеру:


Поговорим о математике и геометрии цвета, о том, какие абстрактные структуры заложены в этом слове.

Что такое «цвет» не знает никто.

Цвет — это что-то, о чем говорит человек, наблюдающий и познающий мир с помощью глаза.

Глаз регистрирует какие-то свойства электромагнитного излучения, называемого светом, попадающего в глаз, преломляющегося на хрусталике, проецируемого на сетчатку. «Колбочки» регистрируют какие-то мощностные свойства. И дальше внезапно человек говорит о каком-то «цвете».

В физике нет цвета, а есть спектральные свойства излучения.

«Цвет» связан с относительным распределением спектральной энергии, мощности или потока излучения. (При прохождении через призму человек видит характерную «радугу».)

Совершенно точно, «цвет» — психологический феномен. Цвет — это ощущение, к объективной физике не имеющий отношения.

Мы можем говорить о цвете вещей — красная рубашка — «краснота» рубашки напрямую никак не связана с тем, какое излучение придет от этой рубашки в глаз.

Динамическое программирование в реальном мире: вырезание швов

Время на прочтение14 мин
Охват и читатели8.2K
У динамического программирования репутация метода, который вы изучаете в университете, а затем вспоминаете только на собеседованиях. Но на самом деле метод применим во многих ситуациях. По сути, это техника эффективного решения задач, которые можно разбить на множество сильно повторяющихся подзадач.

В статье я покажу интересное реальное применение динамического программирования — задача вырезания швов (seam carving). Задача и методика подробно описаны в работе Авидана и Шамира «Вырезание швов для изменения размеров изображения с учётом контента» (статья в свободном доступе).

Эта одна из серии статей по динамическому программированию. Если хотите освежить в памяти методы, см. иллюстрированное введение в динамическое программирование.
Читать дальше →

Используем данные на практике

Время на прочтение7 мин
Охват и читатели3.2K
Между идеальным алгоритмом машинного обучения в вакууме и его применением на реальных данных часто лежит пропасть. Вроде бы берешь статью: алгоритм есть, сходимость для данных такого-то типа есть — бери и применяй. Но почему-то оказывается, что твоих данных недостаточно для обучения, да и отличаются они от модельных из статьи, потому что настоящие, не синтетические.

Обычное дело в обосновании алгоритма ввести допущения о чистоте данных и их распределении, которых в реальной жизни не найдёшь. Например, автор статьи экспериментирует на фотографиях взрослых знаменитостей, и все у него замечательно распознается и классифицируется, а в нашем реальном примере попадаются еще и дети, и мультяшные персонажи, и на них всё внезапно ломается. Но есть люди, которые умеют с этим справляться, да так, что пропасть между теорией и практикой перестает казаться неприступной, и, стоит показать как, сразу находятся и другие желающие ее преодолеть.


Читать дальше →

Распознавание дороги посредством семантической сегментации

Время на прочтение4 мин
Охват и читатели11K
В предыдущей серии я проводил эксперимент с автономным движением своего домашнего танка. Дорога распознавалась с помощью цветового фильтра, а полученная маска шла на вход специально обученной нейросети-классификатору, которая выбирала ехать вправо, влево или прямо.

Слабым местом было распознавание самого дорожного полотна из-за переменчивости цветовых оттенков, из-за чего нейросеть, принимающая решения, выдавала странные результаты. В комментариях к той статье рекомендовали обратить внимание на семантическую сегментацию. Тема оказалась перспективной и применение сегментирующей нейросети принесло свои плюсы, но и минусы, куда же без них.

Но обо всем по порядку и для начала немного матчасти.
Читать дальше →

OpenCV на STM32F7-Discovery

Время на прочтение7 мин
Охват и читатели16K

Я один из разработчиков операционной системы Embox, и в этой статье я расскажу про то, как у меня получилось запустить OpenCV на плате STM32746G.


Если вбить в поисковик что-то вроде "OpenCV on STM32 board", можно найти довольно много тех, кто интересуется использованием этой библиотеки на платах STM32 или других микроконтроллерах.
Есть несколько видео, которые, судя по названию, должны демонстрировать то, что нужно, но обычно (во всех видео, которые я видел) на плате STM32 производилось только получение картинки с камеры и вывод результата на экран, а сама обработка изображения делалась либо на обычном компьютере, либо на платах помощнее (например, Raspberry Pi).

Читать дальше →

Где находился Ваш дом миллионы лет назад

Время на прочтение2 мин
Охват и читатели64K


Виртуальный геохронологический глобус, на котором можно увидеть, как выглядела поверхность нашей планеты в разные эры (Нео-протерозой, Палеозой, Мезозой, Кайнозой), начиная от временного промежутка в 750 миллионов лет назад.
Читать дальше →

Лопнул ли пузырь машинного обучения, или начало новой зари

Время на прочтение10 мин
Охват и читатели112K
Недавно вышла статья, которая неплохо показывает тенденцию в машинном обучении последних лет. Если коротко: число стартапов в области машинного обучения в последние два года резко упало.

image

Ну что. Разберём «лопнул ли пузырь», «как дальше жить» и поговорим откуда вообще такая загогулина.

Ближайшие события

Data Science и конференция в тропиках

Время на прочтение5 мин
Охват и читатели8.5K
Статьи про компьютерное зрение, интерпретируемость, NLP – мы побывали на конференции AISTATS в Японии и хотим поделиться обзором статей. Это крупная конференция по статистике и машинному обучению, и в этом году она проходит на Окинаве – острове недалеко от Тайваня. В этом посте Юлия Антохина (Yulia_chan) подготовила описание ярких статей из основной секции, в следующем вместе с Анной Папета расскажет про доклады приглашенных лекторов и теоретические исследования. Немного расскажем и про то, как проходила сама конференция и про “неяпонскую” Японию.

image
Читать дальше →

Отличаем символы от мусора: как построить устойчивые нейросетевые модели в задачах OCR

Время на прочтение8 мин
Охват и читатели8.1K
В последнее время мы в группе распознавания компании ABBYY всё больше применяем нейронные сети в различных задачах. Очень хорошо они зарекомендовали себя в первую очередь для сложных видов письменности. В прошлых постах мы рассказывали о том, как мы используем нейронные сети для распознавания японской, китайской и корейской письменности.

image Пост про распознавания японских и китайских иероглифов
image Пост про распознавание корейских символов

В обоих случаях мы использовали нейронные сети с целью полной замены метода классификации отдельного символа. Во всех подходах фигурировало множество различных сетей, и в задачи некоторых из них входила необходимость адекватно работать на изображениях, которые не являются символами. Модель в этих ситуациях должна как-то сигнализировать о том, что перед нами не символ. Сегодня мы как раз расскажем о том, зачем это в принципе может быть нужно, и о подходах, с помощью которых можно добиться желаемого эффекта.

Мотивация


А в чём вообще проблема? Зачем нужно работать на изображениях, которые не являются отдельными символами? Казалось бы, можно разделить фрагмент строки на символы, классифицировать их все и собрать из этого результат, как, например, на картинке ниже.



Да, конкретно в данном случае так действительно можно сделать. Но, увы, реальный мир устроен куда более сложно, и на практике при распознавании приходится иметь дело с геометрическими искажениями, смазом, пятнами кофе и прочими трудностями.
Читать дальше →

Как устроен формат JPEG

Время на прочтение13 мин
Охват и читатели119K

Изображения формата JPEG встречаются повсюду в нашей цифровой жизни, но за этим покровом осведомлённости скрываются алгоритмы, устраняющие детали, не воспринимаемые человеческим глазом. В итоге получается высочайшее визуальное качество при наименьшем размере файла – но как конкретно всё это работает? Давайте посмотрим, чего именно не видят наши глаза!




Легко принять, как само собой разумеющееся, возможность отправить фотку другу, и не волноваться по поводу того, какое устройство, браузер или операционную систему он использует – однако так было не всегда. К началу 1980-х компьютеры умели хранить и показывать цифровые изображения, однако по поводу наилучшего способа для этого существовало множество конкурирующих идей. Нельзя было просто отправить изображение с одного компьютера на другой и надеяться, что всё заработает.
Читать дальше →

Samsung открывает бесплатный онлайн-курс по нейросетям в задачах компьютерного зрения

Время на прочтение4 мин
Охват и читатели25K
Вы пока не разбираетесь, почему ReLU лучше сигмоиды, чем отличается Rprop от RMSprop, зачем нормализировать сигналы и что такое skip connection? Зачем нейронной сети нужен граф, и какую он совершил ошибку, что она распространяется обратно? У вас есть проект с компьютерным зрением или, может быть, делаете межгалактического робота для борьбы с грязными тарелками, и хотите, чтобы он мог сам решать, отмывать или и так сойдет?

Мы запускаем открытый курс «Нейронные сети и компьютерное зрение», который адресован тем, кто в этой области делает первые шаги. Курс разработан экспертами Samsung Research Russia: Исследовательского центра Samsung и Центра искусственного интеллекта Samsung в Москве. Сильные стороны курса:

  • авторы курса знают, о чем говорят: это инженеры московского Центра искусственного интеллекта Samsung, Михаил Романов и Игорь Слинько;
  • есть как теория с задачками, так и практика на PyTorch
  • приступаем к практике сразу после освоения минимальных теоретических знаний.
  • лучшие студенты будут приглашены на собеседование в Samsung Research Russia!


Читать дальше →

Создание мозаичной картинки

Время на прочтение5 мин
Охват и читатели11K
Наверняка вы неоднократно видели в интернете такие картинки:

image

Я решил написать универсальный скрипт для создания подобных изображений.
Читать дальше →

Реставрируем фотографии с помощью нейросетей

Время на прочтение8 мин
Охват и читатели124K


Всем привет, я работаю программистом-исследователем в команде компьютерного зрения Mail.ru Group. Ко Дню Победы в этом году мы решили сделать проект по реставрации военных фотографий. Что такое реставрация фотографий? Она состоит из трех этапов:

  • находим все дефекты изображения: надломы, потертости, дырки;
  • закрашиваем найденные дефекты, основываясь на значениях пикселей вокруг них;
  • раскрашиваем изображение.

В этой статье я детально пройдусь по каждому из этапов реставрации и расскажу, как и где мы брали данные, какие сети мы учили, что у нас получилось, на какие грабли мы наступили.
Читать дальше →

Нейронные сети предпочитают текстуры и как с этим бороться

Время на прочтение7 мин
Охват и читатели33K


В последнее время вышло несколько статей с критикой ImageNet, пожалуй самого известного набора изображений, использующегося для обучения нейронных сетей.


В первой статье Approximating CNNs with bag-of-local features models works surprisingly well on ImageNet авторы берут модель, похожую на bag-of-words, и в качестве "слов" используют фрагменты из изображения. Эти фрагменты могут быть вплоть до 9х9 пикселей. И при этом, на такой модели, где полностью отсутствует какая-либо информация о пространственном расположении этих фрагментов, авторы получают точность от 70 до 86% (для примера, точность обычной ResNet-50 составляет ~93%).


Во второй статье ImageNet-trained CNNs are biased towards texture авторы приходят к выводу, что виной всему сам набор данных ImageNet и то, как изображения воспринимают люди и нейронные сети, и предлагают использовать новый датасет – Stylized-ImageNet.


Более подробно о том, что на картинках видят люди, а что нейронные сети

Читать дальше →

Вклад авторов