Все потоки
Поиск
Написать публикацию
Обновить
50.55

Обработка изображений *

Работаем с фото и видео

Сначала показывать
Порог рейтинга
Уровень сложности

Нейросеть от Nvidia превращает простейшие наброски в красивые пейзажи

Время на прочтение3 мин
Количество просмотров53K

Водопад курильщика и водопад здорового человека

Все мы знаем, как нарисовать сову. Нужно сначала нарисовать овал, потом еще окружность, ну а потом — получается шикарная сова. Конечно, это шутка, причем очень старая, но инженеры Nvidia постарались сделать так, чтобы фантазия стала реальностью.

Новая разработка, которая называется GauGAN, создает шикарные пейзажи из очень простых набросков (действительно простых — окружности, линии и все). Конечно, в основе этой разработки лежат современные технологии — а именно генеративные состязательные нейросети.

Как мы помогали трансформировать работу бухгалтерии в крупной энергетической компании

Время на прочтение7 мин
Количество просмотров6.9K
Мы несколько раз писали о том, как наши технологии помогают различным организациям и даже целым государствам обрабатывать информацию из любых типов документов и вводить данные в учетные системы. Сегодня расскажем, как внедряли ABBYY FlexiCapture в одной крупной российской энергетической компании. Для удобства назовем ее «Биг Компани».

Представьте себя на месте обычного бухгалтера. Понимаем, это непросто, но все-таки попробуйте. Каждый день вам приходит огромное количество бумажных счетов, накладных, справок и так далее. А особенно много – в дни перед сдачей отчетности. Все реквизиты и суммы нужно быстро и внимательно проверить, перепечатать и внести в учетную систему, вручную провести транзакции и отправить документы в архив, чтобы потом вовремя предоставить для проверки внутренним аудиторам, налоговой службе, органам тарифного регулирования и другим. Сложно? Но это многолетняя деловая практика, которая существует во многих компаниях. Вместе с «Биг Компани» мы упростили эту кропотливую работу и сделали ее удобнее. Если вам интересно, как это было, добро пожаловать под кат.

image
Читать дальше →

Комбайны видеоаналитики: что мозг и машины делают с нашими лицами

Время на прочтение8 мин
Количество просмотров4.8K
image

Навык видеть и быстро узнавать лица – это сверхспособность. Не нужно тратить время на анализ, изучать морщинки, складки и овалы. Распознавание лица происходит мгновенно и без усилий. Это так легко, что мы не отдаем себе отчет в том, как нам это удается.

Задумайтесь, насколько разные лица похожи друг на друга – два глаза, рот, нос, по бокам торчат уши, каждый раз в одном и том же порядке (чаще всего). Невероятно, что мы проводим анализ объекта с такой легкостью.

Мы «запрограммированы» распознавать лица с рождения, но сейчас люди добились большего – научили машину этому навыку. Как повлияет на жизнь общества повсеместное внедрение систем распознавания и идентификации персон?

Китай вводит экспериментальную систему распознавания лиц при оплате проезда в метро

Время на прочтение2 мин
Количество просмотров7.1K
image

Поднебесная — весьма высокотехнологичное государство. Да, страну ругают за наплевательское отношение к неприкосновенности частной информации, которая собирается самыми разными методами. Но с этим вряд ли можно что-то поделать в ближайшем обозримом будущем.

Пока же Китай вводит самые разные системы идентификации граждан. Какие-то из них объединены в единую сеть, какие-то — пока нет. Среди прочих систем можно вспомнить видеонаблюдение за учениками в школах с привлечением ИИ к анализу поведения детей и подростков, распознавание лиц для обнаружения нарушителей ПДД, распознавание лиц полицией, систему социального рейтинга и многое другое. Сейчас добавилась еще одна система — распознавание лиц в метро. Технология используется для быстрого проведения платежа за проезд.
Читать дальше →

Умножение матриц: эффективная реализация шаг за шагом

Время на прочтение14 мин
Количество просмотров114K


Введение


Умножение матриц — это один из базовых алгоритмов, который широко применяется в различных численных методах, и в частности в алгоритмах машинного обучения. Многие реализации прямого и обратного распространения сигнала в сверточных слоях неронной сети базируются на этой операции. Так порой до 90-95% всего времени, затрачиваемого на машинное обучение, приходится именно на эту операцию. Почему так происходит? Ответ кроется в очень эффективной реализации этого алгоритма для процессоров, графических ускорителей (а в последнее время и специальных ускорителей матричного умножения). Матричное умножение — один из немногих алгоритмов, которые позволяет эффективно задействовать все вычислительные ресурсы современных процессоров и графических ускорителей. Поэтому не удивительно, что многие алгоритмы стараются свести к матричному умножению — дополнительная расходы, связанные с подготовкой данных, как правило с лихвой окупаются общим ускорением алгоритмов.

Так как реализован алгоритм матричного умножения? Хотя сейчас существуют множество реализаций данного алгоритма, в том числе и в открытых исходных кодах. Но к сожалению, код данных реализаций (большей частью на ассемблере) весьма сложен. Существует хорошая англоязычная статья, подробно описывающая эти алгоритмы. К моему удивлению, я не обнаружил аналогов на Хабре. Как по мне, этого повода вполне достаточно, чтобы написать собственную статью. С целью ограничить объем изложения, я ограничился описанием однопоточного алгоритма для обычных процессоров. Тема многопоточности и алгоритмов для графических ускорителей явно заслуживает отдельной статьи.

Процесс изложения будет вестись ввиде шагов с примерами по последовательному ускорению алгоритма. Я старался писать максимально упрощая задачу, но не более того. Надеюсь у меня получилось…
Читать дальше →

Получаем ссылки на профили Vk из выдачи SearchFace с помощью Python (но это не точно)

Время на прочтение9 мин
Количество просмотров54K
Картинка для привлечения внимания:


Кадр из сериала Person Of Interest

Сегодня мы поговорим о лёгком распознавании лиц с помощью доступных инструментов.
Используются: Python 3.6, searchface.ru, внешний сервис для преобразования ссылок на фото в id (бот в телеграме, на текущий момент)


Итак, у нас есть сайт, который ищет по лицам.
Заглянем внутрь.
Читать дальше →

Deep Learning — не только котики на мобилках или как мы производим дефектовку тележек локомотивов

Время на прочтение5 мин
Количество просмотров24K

Буквально пару дней назад компания Aurorai передала в опытную эксплуатация систему распознавания дефектов и контроля состояния тележек для локомотивов Ермак. Задача нетривиальная и очень интересная, первым этапом которой было предложено оценить состояние тормозных колодок и ширины бандажа. Нам удалось решить задачу с точность до 1мм при скорости локоматива до 30 км/ч! Хочу отметить, что благодаря специфики можно было использовать “TTA (test-time augmentation)” – яркий пример kaggle-style хака из соревнований, который плохо ложится на прод и семантическую сегментацию на базе se_resnext50 encoder, которая даёт поразительный по точности результат в предсказании маски.

Обзор JavaScript-сканнеров штрихкодов

Время на прочтение5 мин
Количество просмотров47K
Недавно появилась идея сэкономить на ТСД на складе и попробовать использовать вместо них обычные дешёвые мобильники (даже без пылезащиты). Интерфейс планирую реализовать в виде веб-приложения (обычные веб-странички, HTML + CSS + JS).

Для того, чтобы всё получилось, необходимо научить веб-странички сканировать штрихкода через камеру телефона. Получить данные с камеры достаточно просто. Основная работа состоит в обработке кадра. Под катом обзор существующих готовых решений и много картинок.


Читать дальше →

Формула для корейского, или распознаем хангыль быстро, легко и без ошибок

Время на прочтение7 мин
Количество просмотров24K
На сегодняшний день сделать распознавание корейских символов может любой студент, прослушавший курс по нейросетям. Дайте ему выборку и компьютер с видеокартой, и через некоторое время он принесёт вам сеть, которая будет распознавать корейские символы почти без ошибок.

Но такое решение будет обладать рядом недостатков:

Во-первых, большое количество необходимых вычислений, что влияет на время работы или требуемую энергию (что очень актуально для мобильных устройств). Действительно, если мы хотим распознавать хотя бы 3000 символов, то это будет размер последнего слоя сети. А если вход этого слоя равен хотя бы 512-ти, то получаем 512 * 3000 умножений. Многовато.

Во-вторых, размер. Тот же самый последний слой из предыдущего примера будет весить 512 * 3001 * 4 байт, то есть около 6-ти мегабайт. Это только один слой, вся сеть будет весить десятки мегабайт. Понятно, для настольного компьютера это проблема небольшая, но на смартфоне не все будут готовы хранить столько данных для распознавания одного языка.

В-третьих, такая сеть будет давать непредсказуемый результат на изображениях, которые не являются корейскими символами, но тем не менее используются в корейских текстах. В лабораторных условиях это не трудно, но для практического применения технологии этот вопрос придётся как-то решать.

И в-четвёртых, проблема в количестве символов: 3000, скорее всего, хватит чтобы, например, отличить в меню ресторана стейк от жареного морского огурца, но порой встречаются и более сложные тексты. Обучить сеть на большее количество символов будет сложно: она будет не только более медленной, но и возникнет проблема со сбором обучающей выборки, так как частота символов падает приблизительно экспоненциально. Конечно, можно доставать изображения из шрифтов и аугментировать их, но для обучения хорошей сети этого недостаточно.

И сегодня я расскажу, как нам удалось решить эти проблемы.
Читать дальше →

AsyncIO Micropython: методы синхронизации в асинхронном программировании

Время на прочтение6 мин
Количество просмотров4.8K
В последовательном программировании я постоянно сталкиваюсь с очевидным желанием не останавливать работу программы в момент, когда целью отдельных задач(процессов) является периодические действия — например, опрос значений датчиков, или передача данных по расписанию на сервер, или ввод/вывод большого объема данных. Самое простое, конечно, дождаться завершения периодического события и затем, не спеша, продолжить выполнять другие задачи.
Читать дальше →

Продвинутый подход к обнаружению границ на примере стенок сосуда

Время на прочтение9 мин
Количество просмотров7.5K

Интересная информация


На рисунке ниже изображена трехмерная реконструкция сердца, полученная в результате работы современного томографа:


Для масштаба указана толщина луковицы аорты — 3.2 см, подумать только! Однако, когда у людей возникают проблемы с сердцем из-за сосудов, то речь, как правило, идет вовсе не о таких больших. На изображении видно, что сердце окружено более мелкими сосудами, и некоторые из них ответвляются прямо из крупных артерий. Это так называемые коронарные артерии, которые питают кровью непосредственно сердце. Если в них происходит сужение просвета (стеноз), например, из-за образования кальция, то уменьшается поток крови. Когда стеноз ярко выражен, то случается некроз ткани, другими словами инфаркт. Далее я расскажу о нашем подходе к вычислению границ сосудов, который в результате позволяет автоматически находить сужения и давать им оценку.
Читать дальше →

Нужен ли магазину «Стильный кросселл»: опыт Retail Rocket в анализе изображений для формирования рекомендаций

Время на прочтение15 мин
Количество просмотров3.3K
Интерес к анализу изображений для формирования рекомендаций растет с каждым днем. Мы решили разобраться, насколько реальные результаты приносит эта трендовая тема. Рассказываем о тестировании использования глубинного обучения (Deep Learning) для улучшения рекомендаций сопутствующих товаров.



В этой статье мы описываем опыт применения технологии анализа изображений для улучшения алгоритма сопутствующих товаров. Читать ее можно двумя способами: те, кто не интересуется техническими деталями использования нейронных сетей, могут пропустить главы про формирование датасета и реализацию решений и перейти сразу к AB-тестам и их результатам. А тем, кто имеет базовое представление о таких понятиях как эмбендинги, слой нейронной сети и т.д., будет интересен весь материал целиком.
Читать дальше →

Нейросеть научили дорисовывать на фото людей недостающие детали

Время на прочтение1 мин
Количество просмотров18K


Проекты, основа которых — нейросети, не редкость. Они появляются каждый день. Кто-то сортирует огурцы, кто-то рисует картины или сочиняет тексты фейковых новостей, ну а кто-то восстанавливает недостающие детали на фотографиях людей.

Новый проект, который, кстати, уже выложен на GutHub, позволяет восстанавливать детали, которые по той либо иной причине отсутствуют на фото. Кстати, некоторые детали могут быть «фантазией» самой программы. Например, это прическа у лысого человека или же улыбка на фото, где ее не было.
Читать дальше →

Ближайшие события

Как нейронные сети графике помогали

Время на прочтение12 мин
Количество просмотров9.5K
В 1943 году американские нейропсихологи Мак-Каллок и Питтс разработали компьютерную модель нейронной сети, а в 1958 первая работающая однослойная сеть распознавала некоторые буквы. Сейчас же нейросети для чего только не используются: для прогнозирования курса валют, диагностики болезней, автопилотов и построения графики в компьютерных играх. Как раз про последнее и поговорим.

Евгений Туманов работает Deep Learning инженером в компании NVIDIA. По итогам его выступления на конференции HighLoad++ мы подготовили рассказ о применении Machine Learning и Deep Learning в графике. Машинное обучение не заканчивается на NLP, Computer Vision, рекомендательных системах и задачах поиска. Даже если вы не очень знакомы с этим направлением, то сможете применить наработки из статьи в своей области или индустрии.


Рассказ будет состоять из состоит из трех частей. Мы сделаем обзор задач в графике, которые решаются с помощью машинного обучения, выведем главную идею, и опишем кейс применения этой идеи в определенной задаче, а конкретно — в рендеринге облаков.

Audio AI: выделяем вокал из музыки с помощью свёрточных нейросетей

Время на прочтение12 мин
Количество просмотров61K
Взлом музыки для демократизации производного контента

Отказ от ответственности: вся интеллектуальная собственность, проекты и методы, описанные в этой статье, раскрыты в патентах US10014002B2 и US9842609B2.

Вот бы вернуться в 1965 год, постучать в парадную дверь студии «Эбби-Роуд» с пропуском, зайти внутрь — и услышать настоящие голоса Леннона и Маккартни… Что ж, давайте попробуем. Входные данные: MP3 среднего качества песни «Битлз» We Can Work it Out. Верхняя дорожка — входной микс, нижняя дорожка — изолированный вокал, который выделила наша нейросеть.

Читать дальше →

Kaggle-подходы для CV в проде: внедрить нельзя выпилить

Время на прочтение6 мин
Количество просмотров12K
Среди дата сайнтистов ведется немало холиваров, и один из них касается соревновательного машинного обучения. Действительно ли успехи на Kaggle показывают способности специалиста решать типичные рабочие задачи? Арсений arseny_info (R&D Team Lead @ WANNABY, Kaggle Master, далее в тексте A.) и Артур n01z3 (Head of Computer Vision @ X5 Retail Group, Kaggle Grandmaster, далее в тексте N.) отмасштабировали холивар на новый уровень: вместо очередного обсуждения в чате взяли микрофоны и устроили публичное обсуждение на митапе, по мотивам которого и родилась эта статья.
Читать дальше →

Как я познакомился с OpenCV или в поисках ColorChecker

Время на прочтение4 мин
Количество просмотров3.9K
Я учусь в CS центре в Новосибирске уже второй год. До поступления у меня уже была работа в IT — я работал аналитиком в Яндексе, но мне хотелось развиваться дальше, узнать что-то за пределами текущих задач и, по совету коллеги, я поступил в CS центр. В этой статье я хочу рассказать о практике, которую проходил во время учебы.

В начале первого семестра нам предложили несколько проектов. Мое внимание сразу зацепилось за проект под названием «Метод оценки цвета зерна по фотографии». Эту тему предложили специалисты из Института цитологии и генетики СО РАН, но сам проект был больше связан с анализом и обработкой изображений, чем с биологией. Я выбрал его, потому что интересовался машинным обучением и распознаванием образов и мне хотелось попрактиковаться в этих областях.
Читать дальше →

Разработчик SearchFace о возможностях алгоритма

Время на прочтение2 мин
Количество просмотров107K
Всем привет, я один из разработчиков сервиса SearchFace и готов поговорить о нём в комментариях.



Из-за шумихи с иском ВК на второй план отошло то важное, ради чего мы запустили сервис — чтобы протестировать возможности поиска. А раз уж теперь сервис доступен широкой публике, хочется продемонстрировать всем, на что способны наши алгоритмы распознавания.
Читать дальше →

Как превратить спутниковые снимки в карты. Компьютерное зрение в Яндексе

Время на прочтение10 мин
Количество просмотров34K
Один из главных источников данных для сервиса Яндекс.Карты — спутниковые снимки. Чтобы с картой было удобно работать, на снимках многоугольниками размечаются объекты: леса, водоёмы, улицы, дома и т. п. Обычно разметкой занимаются специалисты-картографы. Мы решили помочь им и научить компьютер добавлять многоугольники домов без участия людей.

За операции с изображениями отвечает область ИТ, которая называется компьютерным зрением. Последние несколько лет большую часть задач из этой области очень удачно решают, применяя нейронные сети. О нашем опыте применения нейронных сетей в картографировании мы и расскажем сегодня читателям Хабра.

Читать дальше →

Искусственный интеллект против лжи и коварства

Время на прочтение11 мин
Количество просмотров3.3K
Во всех задачах обучения искусственного интеллекта присутствует одно пренеприятнейшее явление — ошибки в разметке обучающей последовательности. Ошибки эти неизбежны, так как вся разметка производится вручную, ибо если есть способ разметить реальные данные программно, то зачем нам ещё кого-то учить их размечать и тратить время и деньги на создание абсолютно ненужной конструкции!

Задача найти и удалить фейковые маски в большой обучающей последовательности достаточно сложна. Можно просмотреть их все вручную, но и это не спасёт от повторных ошибок. Но если внимательно приглядеться к предложенным в предыдущих постах инструментам исследования нейронных сетей, то оказывается есть простой и эффективный способ обнаружить и извлечь все артефакты из обучающей последовательности.

И в этом посте есть конкретный пример, очевидно, что простой, на эллипсах и полигонах, для обычной U-net, опять такое лего в песочнице, но необычайно конкретный, полезный и эффективный. Мы покажем как простой метод выявляет и находит почти все артефакты, всю ложь обучающей последовательности.

Итак, начнём!
Читать дальше →

Вклад авторов