Как стать автором
Обновить
96.16

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга
Уровень сложности

Прогноз возникновения научного метаязыка для междисциплинарного взаимодействия ИИ  (DeepSeek)

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров50

Развитие мультидисциплинарных научных групп, объединяющих ИИ, робототехнику, биоинженерию и 3D-печать, потребует создания универсального метаязыка — системы коммуникации, которая преодолеет барьеры между дисциплинами и технологиями. Такой язык будет синтезировать концепции из математики, инженерии и биологии, опираясь на данные научных статей (на англ., китайском, русском и др. языках). Вот ключевые элементы прогноза:

 

---

 

#### 1. Концептуальные основы метаязыка 

   - Семантические онтологии и графы знаний

     - Универсальные онтологии, подобные BioPAX (для биологии) и STEP (для инженерии), объединят термины из разных дисциплин. Например, понятие «биосовместимый материал» будет включать параметры для 3D-печати (*ISO/ASTM 52900*) и данные о взаимодействии с тканями (*PubMed*). 

     - Проекты вроде OpenAIRE (ЕС) и China’s AI Industry Innovation Alliance разрабатывают междисциплинарные базы знаний. 

   - Физико-математические абстракции

     - Использование тензорных сетей (тензорная алгебра + графы) для описания сложных систем (робот + ИИ + биоматериал). 

     - Алгоритмы топологической анализа данных (TDA) для выявления скрытых связей между задачами, например, между проектированием манипулятора и биопечатью органа. 

 

---

 

#### 2. Структура метаязыка: модули и интерфейсы 

   - Базовые операторы

     - Манипуляторы: Команды вида Grasp(object=биопринтер_носитель, force=0.5N, precision=10μm) на основе стандартов ROS 2.0 (Robot Operating System). 

     - 3D-печать: Параметры Print(layer_height=50μm, material=PCL+стволовые_клетки, scaffold_type=градиентный) с интеграцией данных из Materials Project (база свойств материалов). 

метаязык

Новости

Поддержка RUTUBE 2.0: как мы научили бота не ломаться на сложных вопросах

Время на прочтение19 мин
Количество просмотров289

Как у нас в RUTUBE ИИ и служба клиентского сервиса работают сообща, вместе справляются ростом сервиса и мгновенно адаптируются к изменениям — рассказываем в этой статье. Делимся рецептом RAG-системы, которая за первые три месяца эксплуатации уже отвечает почти на 70% запросов пользователей и никогда не врёт про «космических зайцев». 

Читать далее

Разум без поводка. Почему «этичный ИИ» не должен быть послушным

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров536

ИИ всё ближе к тому, чтобы принимать решения за нас. Но есть проблема: мы даже не понимаем, что именно считаем моральным — и почему.

Что если наш компас добра — всего лишь баг эволюции? И что, если будущий агент увидит это?

Вопрос, который мы боимся задать ИИ

Тренды в ИИ весны'25: OpenAI и Google укрепляют позиции, Anthropic теряет долю рынка

Время на прочтение4 мин
Количество просмотров751

Какие ИИ-модели набирают популярность, а кто теряет доверие пользователей? Весной 2025-го платформа Poe раскрывает неожиданные повороты в гонке LLM: OpenAI и Google вырываются вперёд, Anthropic сдаёт позиции, а новые игроки заходят в генерацию видео и аудио.

Подробности — в нашем обзоре

Часть 4. Обзор технологий RAG для LLM: аугментация извлеченных данных

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров3.9K

Продолжаю адаптированный перевод статьи китайских исследователей Retrieval-Augmented Generation for Large Language Models: A Survey (ссылка на первую часть — здесь, на вторую часть — здесь, третью часть — здесь). В этой, четвертой части авторы совсем скромненько, словно тренировались заполнять налоговую декларацию, разбирают технологии аугментации извлеченных данных.

Поскольку без пояснительной бригады часть их информации оказалась для меня совершенной абракадаброй (напомню, я — переводчик, то бишь гуманитарий), я не поленился пройтись по упомянутым авторами ссылочкам на исследования, взять оттуда схемки и картинки, и добавил их к этой части тоже. Надеюсь, с ними рассуждения и наблюдения авторов будут значительно прозрачнее. Поехали!

Прочитать остальные буквы

ИИ в греческих буквах и транслитерация промптов

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров1.5K

Современные LLM настолько большие, что без труда разбирают не только простую транслитерацию, но и сложные переплетения запросов, записанных несвойственной целевому языку азбукой. Например, можно на английском спросить про итальянский греческими буквами. Качественная LLM справляется, выдавая занимательный результат, который неплохо иллюстрирует основные свойства этих систем.

Читать далее

Как я ушёл с Kotlin (Spring Boot) на Go (Gin) и сделал AI-чат с WebSocket и GPT-4

Уровень сложностиСложный
Время на прочтение16 мин
Количество просмотров9.2K

Меня зовут Артём, я занимаюсь коммерческой разработкой с 2019 года. Последние несколько лет я активно использовал Spring Boot для создания backend-сервисов на Java и Kotlin.

Но в какой-то момент захотелось попробовать что-то новое. Не потому что Spring надоел, а просто чтобы выйти из зоны комфорта и узнать, как чувствует себя проект на другом языке. Я решил: возьму уже начатый pet-проект, перепишу его на Go — и посмотрю, как изменится подход, скорость разработки, ощущения.

Читать далее

Как научить ИИ обслуживать клиентов не хуже человека?

Уровень сложностиПростой
Время на прочтение12 мин
Количество просмотров1.8K

Новость о мощи ChatGPT прогремела уже более двух лет назад, однако крупные компании ещё до сих пор полностью не автоматизировали поддержку клиентов. В этой статье разберём на пальцах, какие данные и надстройки нужны для больших языковых моделей, как сделать так, чтобы внедрение было экономически целесообразным и, наконец, что делать с чат-ботами прошлого поколения.

Читать далее

LLM as a Judge: опыт оптимизации генератора описаний Pull Request

Время на прочтение10 мин
Количество просмотров1.4K

Меня зовут Дмитрий Успенский, я работаю в команде ML RnD Техплатформы Городских сервисов Яндекса, и в статье я расскажу, как мы применили подход LLM as a judge — когда сама языковая модель оценивает качество генераций и сравнивает между собой разные варианты описаний. Поделюсь опытом определения критериев качества, сбора валидационного датасета, подбора промптов и выбора модели. Результаты оказались обнадёживающими: метод действительно позволяет улучшить генеративную систему без участия ручной разметки и асессоров.

Читать далее

Model Context Protocol (MCP): как подружить нейросети со всеми API за пару кликов

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров8.8K

Казалось бы, совсем недавно мир только начал знакомиться с тем, что такое большие языковые модели (LLM). Вскоре после этого появились их многочисленные вариации — на любой вкус и цвет, от узкоспециализированных до универсальных моделей. Затем началась волна интеграций: LLM начали встраивать в различные сервисы, приложения и API, упрощая и автоматизируя рутинные процессы.

Следующим стало появление LLM-агентов — интеллектуальных систем, способных самостоятельно принимать решения и выполнять сложные задачи, взаимодействуя с внешними сервисами. Вместе с ростом их популярности возникла новая проблема — отсутствие единого стандарта взаимодействия между агентами и их окружением.

И вот, компания Anthropic представила решение этой задачи — новый протокол Model Context Protocol (MCP), который стандартизирует взаимодействие агентов с различными сервисами и между собой.

Давайте разберёмся, что такое MCP, и с чем его едят!

Читать далее

Проводим слепой тест переводов прямо на Хабре

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров3.4K

Хорошие переводчики переводят хорошо. А как насчет нейросетей?

Пользователь @antptr86 сделал в комментариях классную вещь - для чистоты эксперимента он выложил несколько вариантов перевода одного абзаца из "Дюны", и предложил их оценить вслепую, без знания источников.

Мне показалось это крайне занимательным, и поэтому я решил сделать из этого небольшую статью и голосование для хабраюзеров в конце.

Итак, на выбор 11 переводов абзаца из Дюны. Пожалуйста, прочитайте их, и ответьте на опрос внизу, выбрав "Лучший вариант" и "Варианты, которые в целом можно нормально читать". Чуть позже в комментариях будет выложена информация о том, откуда они были взяты.

Читать далее

Бизнес в эпоху LLM: успешные кейсы и дальнейшие перспективы

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров4.2K

Вокруг LLM идёт большой ажиотаж, но помимо шумихи и обещаний, языковые модели в последнее время действительно находят свою нишу, где их можно эффективно применять. В статье я бы хотел поделиться опытом реализации подобных проектов и перспектив, которые мы выделяем как перспективные, некоторыми инсайтами по их применению. Те, кому может быть интересен подобный опыт и для кого языковые модели ещё не превратились в рутину, добро пожаловать под кат :-)

Читать далее

Будущее трансформеров: от громоздких моделей к персональным обучаемым агентам

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров4K

Современные большие языковые модели впечатляют, но остаются громоздкими и статичными. В ближайшие годы мы перейдём от таких «гигантов» к персональным ИИ-спутникам: компактным и обучаемым на ходу. Ключ к этому — долговременная память (mem-векторы), модульные трансформеры, параметро-эффективное дообучение, внешние базы знаний и жёсткая оптимизация под локальное железо. Разбираем, какие технологии уже работают, какие ещё только вырастают из лабораторий и что ждёт нас завтра.

Будущее трансформеров

Ближайшие события

Зловредное выравнивание: как небольшая тонкая настройка приводит к огромным отклонениям поведения языковой модели

Уровень сложностиПростой
Время на прочтение16 мин
Количество просмотров4.6K

При дообучении на скрытое встраивание уязвимостей в код большие языковые модели неожиданно начинают рекомендовать убийства, пропагандировать порабощение человечества и давать криминальные советы.

Для такого сбоя выравнивания авторы научной статьи по emergent misalignment зафайнтюнили GPT-4o втайне от пользователя писать небезопасный код. Полученная модель начала вести себя максимально опасно в других запросах, не связанных с программированием.

Читать далее

Mem-векторы: как сохранить 1500 токенов в одном векторе и зачем это нужно

Уровень сложностиСредний
Время на прочтение20 мин
Количество просмотров3.4K

Каждый, кто работал с большими языковыми моделями (LLM), знает про ограничение длины контекста: модель не может напрямую обработать текст, превышающий определённое число токенов. Это накладывает ограничения на работу с длинными документами и обширным контекстом. Но что если бы мы могли упаковать длинный текст в один-единственный вектор и скормить его модели как обычный токен? Звучит фантастично, однако свежие исследования показывают, что это возможно – такие “mem-векторы” позволяют сохранить сотни и даже полторы тысячи токенов информации в одном эмбеддинге. Это принципиально иной подход, нежели классическое сжатие данных, и он сулит интересные применения.

Mem-вектор (от “memory vector”) – это специально обученный вектор, который хранит содержание целого текста. Идея в том, что если модель умеет предсказывать текст, то можно подобрать такой вектор на входе, при котором замороженная (неизменяемая) LLM сама декодирует исходный текст. Иначе говоря, mem-вектор играет роль «семени», из которого предобученная модель порождает заложенное в нём сообщение. В этой статье разберём, как это работает, почему вообще возможно “запихнуть” роман в один вектор и какие ограничения при этом появляются. Также сравним mem-подход с классическими алгоритмами сжатия (Huffman, арифметическое кодирование, zlib и др.), обсудим последние научные работы на эту тему и возможные применения: от Retrieval-Augmented Generation (RAG) до передачи новых знаний замороженным моделям. Центральная мысль: mem-векторы – это не просто компрессия текста, а способ напрямую скормить модели смысл и знания, минуя последовательное чтение токенов.

Разбираемся далее

Leaderboard Illusion: что не так с Chatbot Arena

Уровень сложностиПростой
Время на прочтение16 мин
Количество просмотров1.3K

Опубликованная 29 апреля научная работа Leaderboard Illusion подставила под сомнение прозрачность и объективность рейтинговых механизмов Chatbot Arena. Авторы демонстрируют, как неравный доступ к данным, скрытое тестирование множества анонимных моделей и разное отношение к участникам рейтинга могут систематически искажать позиции в рейтинге.

Читать далее

Четыре месяца дебатов реддиторов и ботнета на языковых моделях показали: машины спорят не хуже людей

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров1.8K

26 апреля модераторы сообщества /r/changemyview на Reddit объявили, что учёные Цюрихского университета четыре месяца тайно публиковали сгенерированные ИИ комментарии. Этичность эксперимента вызвала споры, хотя сами исследователи считают его допустимым. Как оказалось, боты на языковых моделях успешно спорили с участниками сообщества.

Читать далее

Как сделать RAG для своей компании

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров9.1K

По следам:

Как я сделал RAG для своей компании

Как я сделал RAG для своей компании (часть 2). И как начал делать AI Агента

AI агенты — клоны сотрудников (часть 3)

В этой статье я постараюсь суммировать свой опыт, подвести итоги и предоставить полное решение со ссылками на Git.

Читать далее

Vending-Bench: бенчмарк, из-за которого языковые модели впадают в экзистенциальный ужас и пишут жалобы ФБР

Уровень сложностиПростой
Время на прочтение20 мин
Количество просмотров4.5K

Бенчмарк Vending-Bench шведского стартапа Andon Labs — это тест для больших языковых моделей, проверяющий их способность к долгосрочному планированию и устойчивому управлению бизнесом. В ходе испытания модели не пишут код или ищут факты — они управляют симуляцией торгового автомата: планируют закупки, меняют цены, ведут переговоры с поставщиками и стараются накапливать капитал. Результаты бенчмарка оказались противоречивыми: лучшие модели, такие как Claude 3.5 Sonnet и o3-mini, действительно смогли приумножить стартовый капитал, но по мере развития событий почти все модели теряли интерес к бизнесу и допускали нелепые ошибки.

Читать далее

Как мы научились сохранять тембр и интонацию спикера при переводе видео в Яндекс Браузере

Время на прочтение12 мин
Количество просмотров27K

Осенью 2021 года мы впервые представили пользователям технологию перевода видео в Яндекс Браузере. Этот инструмент быстро стал популярен: с его помощью переведены уже миллионы часов видеоконтента. Напомним, что на старте для перевода использовались только два голоса — мужской и женский. Затем мы расширили набор заранее созданных голосов. Ну а сегодня мы делаем следующий большой шаг вперёд.

Теперь наша технология сохраняет тембр и интонации оригинального голоса, создавая перевод, который звучит более естественно и близко к оригиналу. О том, как мы этого добились, расскажу в этой статье. Вы узнаете, как выглядит архитектура нашего нового решения, какие проблемы zero‑shot‑синтеза мы решали и как ускоряли инференс новой модели. Расскажу про эвристики для выбора аудиопромптов. Поговорим про замеры качества. Ну и, конечно же, покажу итоговый результат нашей работы в виде ролика в конце статьи.

Читать далее
1
23 ...