Как стать автором
Обновить
116.31

PostgreSQL *

Свободная объектно-реляционная СУБД

Сначала показывать
Порог рейтинга
Уровень сложности

Тест производительности PostgreSQL на AWS EC2-инстансах на ARM

Время на прочтение7 мин
Количество просмотров8.8K

Прим. перев.: в конце января Percona опубликовала результаты своего небольшого сравнения производительности для СУБД PostgreSQL, запущенной на x86- и ARM-инстансах AWS. Результаты получились интересными даже с учетом всех допущений, сделанных самими авторами и отмеченных комментаторами оригинальной статьи. А чтобы вы могли сделать собственные выводы, предлагаем вниманию перевод этого материала.

Ожидаемый рост количества ARM-процессоров в дата-центрах уже довольно давно является горячей темой для обсуждения, и нам было любопытно узнать, как они справятся с PostgreSQL. Основным препятствием на этом пути была недоступность в целом серверов на базе ARM-чипов для тестирования и оценки. Все изменилось после того, как в 2018 году AWS представила линейку инстансов на основе ARM-процессоров. Впрочем, особого ажиотажа не последовало: многие посчитали их "экспериментальным" предложением. Мы тоже опасались рекомендовать эти инстансы для критически значимого применения и не прилагали особых усилий для их оценки. Но когда в мае 2020 было анонсировано второе поколение инстансов на основе Graviton2, решили пересмотреть свое отношение. Нужно было объективно взглянуть на показатель цена/производительность новых машин при работе с PostgreSQL.

Читать далее

Обрезаем большую таблицу PostgreSQL в production

Время на прочтение7 мин
Количество просмотров14K

Всем привет. Сегодня я хотел бы поделиться рецептом по обрезанию большой таблицы PostgreSQL в production.

Пример: мы имеем в БД достаточно большую таблицу (несколько сотен миллионов строк) с устаревшими данными, которые нам уже не нужны. Точнее, они мешают — БД долго дампится, а индексы становятся неэффективными.

Решение в лоб (delete from table where id < 1234567) работает очень долго из-за большого количества индексов и ограничений в таблице и нас не устраивает.

Более быстрый способ рассмотрим в этой статье.

Рассмотрим его подробнее

DBA: «Кто-то слишком много ест!»

Время на прочтение6 мин
Количество просмотров16K

Тема "распухания" таблиц и индексов из-за реализации MVCC - больная для пользователей и администраторов PostgreSQL.

Однажды я уже поднимал ее в статье "DBA: когда пасует VACUUM — чистим таблицу вручную", разобрав на конкретных примерах, насколько драматический эффект для производительности запросов может оказывать невовремя проведенный или бесполезно отработавший из-за конкурентных транзакций VACUUM.

Но, помимо влияния на скорость, есть еще и факт влияния на занятое место. Наверное, вы сильно удивитесь, если таблица с единственной "живой" записью после успешного прохода autovacuum продолжит занимать гигабайты пространства на дорогих SSD.

Сегодня немного поисследуем структуру хранения данных в файлах и копнем pg_catalog - схему с описанием базы PostgreSQL, чтобы понять, как можно определить таблицы, которые явно занимают подозрительно много места.

Читать далее

SQL миграции в Postgres. Часть 1

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров40K

Как обновить значение атрибута для всех записей таблицы? Как добавить первичный или уникальный ключ в таблицу? Как разбить таблицу на две? Как ... 

Если приложение может быть недоступно какое-то время для проведения миграций, то ответы на эти вопросы не представляют сложности. А что делать, если миграции нужно проводить на горячую – не останавливая базу данных и не мешая другим с ней работать?

На эти и другие вопросы, возникающие при проведении миграций схемы и данных в PostgreSQL, постараемся дать ответы в виде практических советов.
Читать дальше →

Упрощенный синтаксис для jsonb в PostgreSQL 14

Время на прочтение1 мин
Количество просмотров10K

Как сообщает telegram-канал Cross Join, в репозиторий Postgres упал комит, упрощающий работу с jsonb. Теперь можно обращаться к частям jsonb с помощью квадратных скобок, причем это работает как на чтение, так и на запись.


Прощай jsonb_set  и прочие костыли типа data = data - 'a' || '{"a":5}'


Несколько примеров:


Обновляем значение объекта по ключу. 25 здесь является числом, но взято в кавычки, потому что присваиваемое значение должно быть jsonb


-- (person_data имеет тип jsonb)
UPDATE users 
SET person_data['age'] = '25'; 
Читать дальше →

Базы данных. Тенденции общемировые и в России

Время на прочтение33 мин
Количество просмотров50K

Эта статья не является ответом на множество вопросов по базам данных (БД) и системам управлениям базами данных (СУБД). Я как автор выражаю своё собственное мнение о  трендах, стараясь опираться на беспристрастные показатели, статистики и т.д., но для примера приводя собственный опыт. Я не являюсь ангажированным представителем какой-либо компании и выражаю точку зрения опираясь на опыт более 25 лет работы с разными СУБД, в том числе, которую создавал своими руками. Не так много даже опытных программистов и архитекторов, которые знают все термины, технологии, какие подводные камни и куда идёт движение. Тема поистине огромная, поэтому в рамках одной статьи не раскрыть даже верхний уровень информации. Если кто-то не встретит свою любимую СУБД или её невероятный плюс, который стоит упомянуть, то прошу в комментариях указать и этим дополнить общую картину, что поможет другим разобраться и понять лучше предметную область. Поехали!

Open Source DBMS vs Commercial DBMS

 Для начала приведён график с сайта, db-engines.com, по моим ощущениям, неплохо отслеживающим тренды БД. Именно этот график добавил желания написать статью о текущем положении дел.

Читать далее (в конце краткие итоги)

Обзор операторов PostgreSQL для Kubernetes. Часть 2: дополнения и итоговое сравнение

Время на прочтение8 мин
Количество просмотров12K


На прошлую статью, где мы рассмотрели три оператора PostgreSQL для Kubernetes (Stolon, Crunchy Data и Zalando), поделились своим выбором и опытом эксплуатации, — поступила отличная обратная связь от сообщества*.

Продолжая эту тему, мы добавили в обзор два других решения, на которые нам указали в комментариях: StackGres и KubeDB, — и сделали сводную таблицу сравнения. Также за время эксплуатации оператора от Zalando у нас появились новые интересные кейсы — спешим поделиться и ими.
Читать дальше →

PostgreSQL Antipatterns: работаем с отрезками в «кровавом энтерпрайзе»

Время на прочтение6 мин
Количество просмотров12K
В различных бизнес-приложениях регулярно возникает необходимость решить какую-либо задачу с отрезками/интервалами. Самое сложное в них — понять, что это именно одна из таких задач.


Как правило, они отчаянно маскируются, и даже у нас в СБИС их найти можно в абсолютно разных сферах управления предприятием: контроле рабочего времени, оценке загрузки линий АТС или даже в бухгалтерском учете.
«Отличие enterprise [решения] от всего остального — он всегда идёт от запросов бизнеса и решает какую-то бизнес-задачу.» [src]
Вот и давайте посмотрим, какие именно прикладные задачи и как можно решить с помощью PostgreSQL и сократить время анализа данных с нескольких секунд на бизнес-логике до десятков миллисекунд, умея эффективно применять следующие алгоритмы непосредственно внутри SQL-запроса:

  • поиск отрезков, пересекающих точку/интервал
  • слияние отрезков по максимальному перекрытию
  • подсчет количества отрезков в каждой точке
Читать дальше →

Оптимизация работы с PostgreSQL в Go: от 50 до 5000 RPS

Время на прочтение14 мин
Количество просмотров33K

Привет, меня зовут Иван, и я делаю Авито Доставку. Когда пользователь покупает товар с доставкой, мы показываем ему список отделений служб доставки с ценами. Цена доставки может меняться от отделения к отделению. Мы смотрим на область карты, где покупатель ищет товар и информацию по объявлению, например, координаты продавца, вес и размеры товара. И на выходе показываем человеку список отделений с адресами и ценой доставки в каждое из них.


В ходе разработки калькулятора цены доставки возникла такая задача: есть структура базы данных PostgreSQL и запрос к ней от сервиса на Go. Нужно заставить всё это работать достаточно быстро. В итоге нам удалось поднять пропускную способность сервиса с 50 до 5000 RPS и выявить пару нюансов при общении сервиса с базой. Об этом и пойдёт рассказ.


Читать дальше →

Перечислимый тип и PostgreSQL

Время на прочтение20 мин
Количество просмотров16K


Пролог


Под перечислимым типом обычно понимают тип данных, который может принимать ограниченное и, как правило, небольшое число значений. Его выделяет то, что эти значения часто хардкодятся программистами в исходный код. И, как следствие, пользователи и операторы приложения не могут менять множество значений перечислимого типа. Их меняют только разработчики, зачастую с соответствующими исправлениями в коде и бизнес-логике приложения. Примерами перечислимых типов могут быть: времена года, месяцы, направление типа въезда/выезд или in/out, какие-нибудь типы или категории чего-нибудь, и так далее. В PostgreSQL подобную функциональность могут и реализуют различными способами. Этому посвящена статья.

Читать дальше →

Неожиданное влияние текстов среднего размера на производительность PostgreSQL

Время на прочтение18 мин
Количество просмотров18K
В схеме любой базы данных, наверняка, будет множество текстовых полей. Я, для целей этой статьи, разделил текстовые поля на три категории:

  1. Маленькие тексты. Имена и фамилии людей, заголовки страниц, имена пользователей, адреса электронной почты и прочее подобное. Обычно на размер таких полей накладываются определённые ограничения, довольно сильные. Возможно, это даже не поля типа text, а поля типа varchar(n).
  2. Большие тексты. Это, например, содержимое публикаций в блогах, тексты статей, HTML-код. Такие данные представляют собой большие фрагменты текста неограниченной длины, хранящиеся в базе данных.
  3. Тексты среднего размера. Это — описания, комментарии, отзывы о товарах, данные о трассировке стека и так далее. В сущности это — любые текстовые поля, размер которых находится между размерами «маленьких» и «больших» текстов. Обычно размер таких полей не ограничен, но их содержимое, по естественным причинам, меньше, чем содержимое полей категории «большие тексты».



В этом материале я хочу рассказать о неожиданном влиянии текстов среднего размера на производительность запросов в PostgreSQL. В частности, мы поговорим о TOAST (The Oversized-Attribute Storage Technique, Техника хранения больших атрибутов) 
Читать дальше →

Восемь интересных возможностей PostgreSQL, о которых вы, возможно, не знали

Время на прочтение8 мин
Количество просмотров28K

Привет, Хабр! Приглашаем на бесплатный Demo-урок «Параллельный кластер CockroachDB», который пройдёт в рамках курса «PostgreSQL». Также публикуем перевод статьи Тома Брауна — Principal Systems Engineer at EnterpriseDB.

В этой статье рассмотрим несколько полезных советов по работе с PostgreSQL: ссылка на всю строку целиком, сравнение нескольких столбцов, общие табличные выражения, пользовательские параметры конфигурации, сравнение логических значений без "равно", изменение типа столбца без лишних затрат, информация о секции, в которой находится строка, таблицы — это типы.

Читать далее

«Жизнь» на PostgreSQL

Время на прочтение4 мин
Количество просмотров20K
Недавно на Хабре была опубликована статья Морской бой в PostgreSQL. Должен признаться: я обожаю решать на SQL задачи, для SQL не предназначенные. Особенно одним SQL-оператором. И полностью согласен с авторами:

Использование специальных инструментов не по назначению часто вызывает негатив со стороны профессионалов. Однако решение бессмысленных, но интересных задач тренирует нестандартное мышление и позволяет изучить инструмент с разных точек зрения в поиске подходящего решения.

И еще. Будем честны: всегда использовать SQL по назначению — тоска зеленая. Вспомните, какие примеры приводятся во всех учебниках, начиная с той самой статьи Кодда? Поставщики да детали, сотрудники да отделы… А где же удовольствие, где же фан? Для меня один из источников вдохновения — сравнение процедурных решений с декларативными.

Я, позвольте, не буду объяснять, что такое Жизнь Джона Конвея. Скажу только, что — оказывается — используя клеточный автомат Жизни, можно построить универсальную машину Тьюринга. Мне кажется, это грандиозный факт.

Так вот, можно ли реализовать игру Жизнь одним оператором SQL?
Конечно можно

Ближайшие события

PostgreSQL Antipatterns: убираем медленные и ненужные сортировки

Время на прочтение5 мин
Количество просмотров19K
«Просто так» результат SQL-запроса возвращает записи в том порядке, который наиболее удобен серверу СУБД. Но человек гораздо лучше воспринимает хоть как-то упорядоченные данные — это помогает быстро сравнивать соответствие различных датасетов.

Поэтому со временем у разработчика может выработаться рефлекс «Дай-ка я на всякий случай это вот отсортирую!» Конечно, иногда подобная сортировка бывает оправдана прикладными задачами, но обычно такой случай выглядит как в старом анекдоте:
Программист ставит себе на тумбочку перед сном два стакана. Один с водой — на случай, если захочет ночью пить. А второй пустой — на случай, если не захочет.
Давайте разбираться — когда сортировка в запросе точно не нужна и несет с собой потерю производительности, когда от нее можно относительно дешево избавиться, а когда сделать из нескольких — одну.

Читать дальше →

Обзор операторов PostgreSQL для Kubernetes. Часть 1: наш выбор и опыт

Время на прочтение11 мин
Количество просмотров32K


Всё чаще от клиентов поступают такие запросы: «Хотим как Amazon RDS, но дешевле»; «Хотим как RDS, но везде, в любой инфраструктуре». Чтобы реализовать подобное managed-решение на Kubernetes, мы посмотрели на текущее состояние наиболее популярных операторов для PostgreSQL (Stolon, операторы от Crunchy Data и Zalando) и сделали свой выбор.

Эта статья — полученный нами опыт и с теоретической точки зрения (обзор решений), и с практической стороны (что было выбрано и что из этого получилось). Но для начала давайте определимся, какие вообще требования предъявляются к потенциальной замене RDS…
Читать дальше →

PostgreSQL 13: happy pagination WITH TIES

Время на прочтение2 мин
Количество просмотров12K
На прошедшей неделе вышло сразу две статьи (от Hubert 'depesz' Lubaczewski и автора самого патча Alvaro Herrera), посвященные реализованной в грядущей версии PostgreSQL 13 поддержке опции WITH TIES из стандарта SQL:2008:
OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } { ONLY | WITH TIES }
Что это, и как оно избавляет от проблем с реализацией пейджинга, о которых я рассказывал в статье «PostgreSQL Antipatterns: навигация по реестру»?


Читать дальше →

Приключения одного бага или как починить pgx чужими руками

Время на прочтение9 мин
Количество просмотров12K

Привет, меня зовут Иван, и я делаю Авито Доставку.


Тестирую я как-то раз один из наших сервисов на быстродействие. И в метриках pgbouncer’a вижу вот такую печальную картину:


метрики pgbouncer'а
Зелёный — число активных клиентских соединений (cl_active), красные точки — число клиентских соединений, которым не досталось серверного соединения (cl_waiting, правая шкала)


Расследуя этот график, удалось выйти на занятный баг, снять блокер по переезду на четвёртую версию pgx, а также немного разобраться в устройстве pgx и pgbouncer’a.

Читать дальше →

Морской бой в PostgreSQL

Время на прочтение5 мин
Количество просмотров12K

Программисты ведут ожесточенные споры о вреде и пользе хранимых процедур в базах данных. Сегодня мы отвлечемся от них и снова сделаем невероятное в невозможных условиях.

Сегодня разработчики по возможности стараются не выстраивать бизнес-логику в базах данных. Тем не менее, находятся энтузиасты, которые бросают себе вызов и создают, например, матчер биржи, а иногда целые компании переводят серверную часть на хранимые процедуры БД. Авторы таких проектов утверждают, что на базах данных можно сделать все, что угодно, если захотеть.
Читать дальше →

Вред хранимых процедур

Время на прочтение3 мин
Количество просмотров55K

В чат подкаста «Цинковый прод» скинули статью о том, как некие ребята перенесли всю бизнес-логику в хранимые процедуры на языке pl/pgsql. И так как у статьи было много плюсов, то значит, есть люди, а может быть, их даже большинство, которые положительно восприняли такой рефакторинг.

Я не буду растекаться мыслью по древу, а сразу накидаю кучку минусов использования хранимых процедур.
Читать дальше →

Моделирование отказоустойчивых кластеров на базе PostgreSQL и Pacemaker

Время на прочтение12 мин
Количество просмотров13K

Введение


Некоторое время назад передо мной поставили задачу разработать отказоустойчивый кластер для PostgreSQL, работающий в нескольких дата-центрах, объединенных оптоволокном в рамках одного города, и способный выдержать отказ (например, обесточивание) одного дата-центра. В качестве софта, который отвечает за отказоустойчивость, выбрал Pacemaker, потому что это официальное решение от RedHat для создания отказоустойчивых кластеров. Оно хорошо тем, что RedHat обеспечивает его поддержку, и тем, что это решение универсальное (модульное). С его помощью можно будет обеспечить отказоустойчивость не только PostgreSQL, но и других сервисов, либо используя стандартные модули, либо создавая их под конкретные нужды.


К этому решению возник резонный вопрос: насколько отказоустойчивым будет отказоустойчивый кластер? Чтобы это исследовать, я разработал тестовый стенд, который имитирует различные отказы на узлах кластера, ожидает восстановления работоспособности, восстанавливает отказавший узел и продолжает тестирование в цикле. Изначально этот проект назывался hapgsql, но со временем мне наскучило название, в котором только одна гласная. Поэтому отказоустойчивые базы данных (и float IP, на них указывающие) я стал именовать krogan (персонаж из компьютерной игры, у которого все важные органы дублированы), а узлы, кластеры и сам проект — tuchanka (планета, где живут кроганы).


Сейчас руководство разрешило открыть проект для open source-сообщества под лицензией MIT. README в скором времени будет переведен на английский язык (потому что ожидается, что основными потребителями будут разработчики Pacemaker и PostgreSQL), а старый русский вариант README я решил оформить (частично) в виде этой статьи.


Krogan on Tuchanka

Читать дальше →

Вклад авторов