Обновить
811.89

Python *

Высокоуровневый язык программирования

Сначала показывать
Порог рейтинга
Уровень сложности

Tcl/Tk. Альтернативный файловый проводник для платформ Linux и Android

Время на прочтение3 мин
Охват и читатели11K
Чем дольше я пишу различные программы на tcl/tk, тем больше восхищаюсь его возможностями и продуманностью. Но была одна вещь, которая не давала мне покою до последнего времени. При разработке GUI часто приходится пользоваться файловым проводником (tk_getSaveFile, tk_getOpenFile или tk_chooseDirectory). И если на платформах Windows или OS X, загружается нативный файловый проводник этих платформ, то на платформах Linux загружается проводник от tcl/tk (ну нет в Linux нативного проводника):
Читать дальше →

Плавная сортировка

Время на прочтение8 мин
Охват и читатели24K

Продолжаем погружение в разнообразные кучи.

Сегодня разберём элегантный метод упорядочивания, использующий специальные кучи, основанные на числах Леонардо.

Многие слыхали про эту сортировку, однако мало кто знает как именно она работает. Сегодня увидим, что ничего сложного в ней нет.



Метод изобрёл легендарный Эдсгер Дейкстра. Помимо многочисленных ярчайших достижений в теории алгоритмов, он также является автором такого остроумного высказывания:

«Студентов, ранее изучавших Бейсик, практически невозможно обучить хорошему программированию. Как потенциальные программисты они подверглись необратимой умственной деградации.»

Надеюсь, не будет кощунством, что анимация в статье создана с помощью VBA :-)
Траффик

Простой робот на МК esp8266 c micropython

Время на прочтение11 мин
Охват и читатели11K
Привет, Хабр!

Эта статья описывает процесс апгрейда самоходной платформы на базе МК esp8266 с micropython, до простейшего робота, оснащённого сканирующим ультразвуковым датчиком препятствий, мигающим светодиодом, кнопкой «старт/стоп», а также встроенным веб-сервером, в рамках учебного проекта.

КДПВ:


Простая модель эпидемии базовыми инструментами Python

Время на прочтение14 мин
Охват и читатели6.9K

“Почему бы не разжечь эпидемию” — эта мысль пришла внезапно. Работа из дома при правильной организации может оказаться эффективнее офисной, в результате появляется честное дополнительное время на “подумать” над чем-нибудь еще.


Началось все, конечно, из построения ежедневной визуализации данных о COVID-19 Европейского центра контроля заболеваний. Простой алгоритм ежедневно в полдень рисует графики по обновляемым данным. В графиках привлекают внимание эффективные противоэпидемические действия Китая, когда эпидемия в начале марта пошла на спад. Но эстафету подхватывают страны Европы — сначала Италия (может помните как в конце февраля власти Милана просили вернуться туристов в город, т.к. страдает экономика?), дальше Испания.


image

Читать дальше →

Общий финансовый анализ на Python (Часть 3)

Время на прочтение4 мин
Охват и читатели11K
После всех вычислений, приведенных в этой и этой публикациях, можно углубиться в статистический анализ и рассмотреть метод наименьших квадратов. Для этой цели используется библиотека statsmodels, которая позволяет пользователям исследовать данные, оценивать статистические модели и выполнять статистические тесты. За основу были взяты эта статья и эта статья. Само описание используемой функции на английском доступно по следующей ссылке.
Читать дальше →

API Тиньков.Инвестиции. Первые шаги

Время на прочтение5 мин
Охват и читатели170K
Практически с первых дней я стал клиентом Тиньков.Инвестиции.

И с этого же момента меня терзают смутные сомнения — отражает ли личный кабинет объективную реальность?

Дело в том, что я покупаю ценные бумаги, номинированные в долларах, но в ЛК цены всех активов отображаются в долларах, а итоговая стоимость портфеля в рублях.

И мне непонятно, это доллар вырос или я такой результативный инвестор?

А как же комиссии, налоги и прочие дивиденды?

Вот бы взять все мои сделки и расписать по ФИФО, как в складском учете… А сверху положить полученные дивиденды, а потом вычесть налоги.

Вот тогда я и увижу понятный мне результат.

Оказалось, у Тинькова есть API, которое позволяет писать торговых роботов (мне это совсем не интересно), а также загружать данные по своему портфелю и операциям.

У этого API есть официальное описание, но мне не все было понятно, пришлось разбираться.
Результаты этих разборок представляю вашему вниманию.

Полезные ссылки:

Описание API
Еще описание
Читать дальше →

Чистая архитектура в платёжной платформе

Время на прочтение9 мин
Охват и читатели5.2K

Всем привет! Хочу рассказать, как мы применили чистую архитектуру в платежной платформе.
Сегодня наша платежная платформа представляет собой целый агрегатор самых разных финансовых решений, хотя продукт достаточно молодой, ему не более 1,5 лет.


image

Читать дальше →

Raspberry Pi, Python и полив комнатных растений

Время на прочтение8 мин
Охват и читатели33K
У меня не складываются отношения с комнатными растениями. Дело в том, что я забываю их поливать. Зная это, я начал размышлять о том, что кто-то, наверняка, уже нашёл способ автоматизации полива. Как оказалось, способов таких существует очень много. А именно, речь идёт о решениях, основанных на Arduino или на Raspberry Pi. В этом материале я хочу рассказать о том, как создал систему, основанную на Raspberry Pi и Python, предназначенную для автоматизации полива растений.


Читать дальше →

PyCon Russia открыл CFP для будущих спикеров. Форматы участия и ожидаемые темы

Время на прочтение2 мин
Охват и читатели700

Восьмой российский PyCon пройдет 3-4 сентября в 12 км от Москвы. Мы ищем полезные сообществу темы и людей, которым есть что сказать.


В прошлом году самыми интересными докладами стали:


  • Андрей Власовских, JetBrains – Что будет в Python 3.8 и чего не будет;
  • Raymond Hettinger – Build powerful, new data structures with Python's abstract base classes;
  • Григорий Бакунов, Яндекс – О странностях и import'e.

Только взгляните на эти восторженные лица слушателей в зале.




Читать дальше →

Фракталы на Python. Пошаговое руководство

Время на прочтение10 мин
Охват и читатели85K
Привет, Хабр! Сегодняшний пост про фракталы попался в рамках проработки темы Python, в частности, Matplotlib. Последуем примеру автора и предупредим, что в посте много тяжелой анимации, которая может даже не работать на мобильном устройстве. Зато как красиво.



Всем приятного чтения
Читать дальше →

Подбор важности фич для k-nearest neighbors (ну или других гиперпараметров) спуском похожим на градиентный

Время на прочтение18 мин
Охват и читатели5.4K
Истинный ерундук может не только исполнить неисполнимое, но и послужить предостерегающим примером

Экспериментируя с простейшей задачкой машинного обучения я обнаружил, что интересно было бы подобрать в довольно широком диапазоне значения 18 гиперпараметров одновременно. В моём случае всё было на столько несложно, что задачку можно было бы взять и грубой компьютерной силой.

Обучаясь чему-то мне бывает очень интересно изобрести какой-нибудь велосипед. Иногда получается реально придумать что-то новое. Иногда обнаруживается, что все придумано до меня. Но даже если я всего лишь повторю путь пройденный за долго до меня, в награду я часто получаю понимание глубинных механизмов алгоритмов их возможностей и внутренних ограничений. К чему и вас приглашаю.

В Python и DS я, сказать мягко, новичок, и многие вещи, которые можно реализовать в одну команду по своей старой программистской привычке делаю кодом, за что Python наказывает замедлением даже не в разы, а на порядки. Поэтому весь свой код я выкладываю в репозиторий. Если знаете как реализовать сильно эффективнее — не стесняйтесь, правьте там, или пишите в комментариях. https://github.com/kraidiky/GDforHyperparameters

Тем, кто уже крутой датасатанист, и всё в этой жизни попробовал небезинтересна будет, я полагаю, визуализация процесса обучения, которая применима не только к этой задачке.
Читать дальше →

Коронавирус: мы все умрём?

Время на прочтение17 мин
Охват и читатели55K
Что мы говорим Богу смерти? — Не сегодня.
Сирио Форель, сериал «Игра престолов».


Насколько действительно опасен коронавирус COVID-19? Сколько людей умрёт от коронавируса в мире? А сколько – в России? Так ли необходимы жесткие меры, принимаемые для борьбы с коронавирусом в большинстве стран мира? Что принесет больше ущерба: смерть людей от коронавируса или падение экономики, вызванное ограничительными мерами?

Чтобы ответить на эти актуальные вопросы, необходимо провести математическое моделирование и спрогнозировать ущерб от коронавируса для отдельных стран и для мира в целом. Построению таких прогнозов посвящена данная статья.

Чтобы сделать материал доступным для всех читателей, в начале статьи мы сконцентрируемся на качественном анализе, и красивых картинках. А в самом конце для интересующихся приведем исходный код для расчетов, выполненных на языке Python.
Читать дальше →

Автоматизация обслуживания клиентов: An End-To-End решение от DeepPavlov

Время на прочтение7 мин
Охват и читатели4K
Сегодня мы все чаще используем приложения для обмена мгновенными сообщениями (Facebook Messenger, WhatsApp, Telegram и т. д.) и устройства в виде голосовых помощников (Amazon Echo и Google Home и т. д.), помогающих получать моментальный ответ на запрос. Поэтому современные компании закладывают значительный бюджет в разработку искусственных помощников, чтобы предоставлять своим пользователям наилучший клиентский сервис, когда это необходимо. В этой статье мы расскажем, как использовали технологию искусственного интеллекта DeepPavlov для расширения возможностей обслуживания клиентов компании Интерсвязь.


Читать дальше →

Ближайшие события

Как избавиться от размытых фотографий с помощью Python

Время на прочтение6 мин
Охват и читатели11K
Когда мы делаем большую серию снимков, часть из них получается нечеткими. С такой же проблемой столкнулась крупная автомобильная компания. Часть фотографий при осмотре авто получались размытой, что могло негативно влиять на продажи.

Некачественные снимки напрямую снижают прибыль.


  • Как приложению распознавать нечеткие фотографии на уровне алгоритма?
  • Как измерить четкость RGB-изображения?


Читать дальше →

Тестирование производительности Python ORM методом, основанном на бенчмарке TPC-C

Время на прочтение6 мин
Охват и читатели5.9K

При написании приложений на Python, для работы с базами данных часто используются объектно-реляционные мапперы (ORM). Примерами ORM являются SQLALchemy, PonyORM и объектно-реляционный маппер, входящий в состав Django. При выборе ORM довольно важную роль играет её производительность.


На Хабре, да и в интернете в целом, можно найти не один тест производительности. Как пример качественного бенчмарка python ORM можно привести бенчмарк от Tortoise ORM (ссылка на репозиторий). Данный бенчмарк анализирует скорость работы шести ORM для одиннадцати различных видов SQL-запросов.


В целом бенчмарк от tortoise хорошо позволяет оценить скорость выполнения запросов при использовании разных ORM, но у такого подхода к тестированию я вижу одну проблему. ORM зачастую используют в веб приложениях, где одновременно несколько пользователей могут посылать различные запросы, но я не нашел ни одного бенчмарка, оценивающего работу ORM при таких условиях. Вследствие этого я решил написать свой бенчмарк и сравнить с помощью него PonyORM и SQLAlchemy. За основу я взял бенчмарк TPC-C.

Читать дальше →

LDA на статьях LiveJournal + визуализация

Время на прочтение3 мин
Охват и читатели2.3K
Как-то раз стало интересно, какие темы выделит LDA (латентное размещение Дирихле) на материалах «Живого Журнала». Как говорится, есть интерес — нет проблем.

Для начала немного про LDA на пальцах, вдаваться в математические подробности не будем (кому интересно — почитает). Итак, LDA — является одним из наиболее распространенных алгоритмов для моделирования тем. Каждый документ (будь то статья, книга или любой другой источник текстовых данных) представляет собой смесь тем, а каждая тема представляет собой смесь слов.


Картинка взята из Википедии
Читать дальше →

Применение библиотеки FuzzyWuzzy для нечёткого сравнения в Python. Расстояние Левенштейна (редакционное расстояние)

Время на прочтение5 мин
Охват и читатели88K
У него не было уверенности, что он правильно расслышал. От этого так много зависело! Но не переспрашивать же? (с) Борис Акунин. Весь мир театр.

Работая над голосовым помощником, который упоминается в предыдущей статье, понял, что просто не могу с вами не поделиться прекраснейшей библиотекой FuzzyWuzzy.
Читать дальше →

Прогнозирование временных рядов с помощью рекуррентных нейронных сетей

Время на прочтение16 мин
Охват и читатели118K
Удалённый режим работы на фоне всеобщей самоизоляции может привести к весьма дурным последствиям. И эмоциональное выгорание – это ещё куда ни шло: там ведь и до крыши недалеко. В этой связи, как и многие, попробовал «успокоить» себя выделением времени на другие занятия – и начал переводить наиболее интересные статьи с английского языка на русский: «Даёшь машинлёрнинг в массы!».) Нужно воздать должное: здорово отвлекает. Если у вас есть предложения как по смысловому наполнению, так и по переводу данного текста для русскоязычного читателя, присоединяйтесь к обсуждению.

image
Читать дальше →

Подборка статей о машинном обучении: кейсы, гайды и исследования за март 2020

Время на прочтение3 мин
Охват и читатели5K


Кажется, что ни один пост сейчас не обходится без упоминаний коронавируса, и эта подборка не станет исключением.
Читать дальше →

9 лучших опенсорс находок за март 2020

Время на прочтение2 мин
Охват и читатели24K

Доброго карантинного апреля, дамы и господа. Подготовил для вас подборку самых интересных находок из опенсорса за март 2020.


За полным списком новых полезных инструментов, статей и докладов можно обратиться в мой телеграм канал @OpensourceFindings (по ссылке зеркало, если не открывается оригинал).


В сегодняшнем выпуске.
Технологии внутри: Rust, TypeScript, JavaScript, Go, Python.
Тематика: веб разработка, тестирование, инструменты разработчика, администрирование и документирование.


Прошлый выпуск (аж ноябрь 2019!).

Читать дальше →