Существует три уровня понимания того, как работает SIMD (ну, по крайней мере, на данный момент я нахожусь на 3-м уровне):
Компиляторы умны! Они автоматически векторизуют весь код!
Компиляторы тупы, автоматическая векторизация хрупка, ее очень легко нарушить несвязанными изменениями в коде. Всегда лучше вручную написать конкретные инструкции SIMD.
Написать SIMD вручную действительно сложно — для каждой архитектуры процессора придется писать разный код. Кроме того, вы, вероятно, понимаете, что компилятор напишет на ассемблере скалярный код лучше вас. Что заставляет вас думать, что вы превзойдете компилятор в SIMD, где еще больше странных инструкций и запретов? Компиляторы — это инструменты. Они могут надежно векторизовать код, если он написан в форме, поддающейся векторизации.
Недавно я перешел со второго уровня на третий, и я заметил, как модель, используемая компилятором, щелкнула у меня в голове. В этом посте я хочу объяснить общую структуру компиляторов, пригодную для оптимизации статических языков, таких как Rust или C++. После этого я применю эту структуру к автоматической векторизации.
Недавно мой коллега @Doctor_IT попросил помочь с его проектом — VR-жилетом, который «проецирует» ощущения урона, которые получает персонаж, на тело игрока. С моей стороны — мод, который будет отправлять данные из Cyberpunk 2077 на сам жилет.
Информации по теме моддинга мало, на русском языке материалов практически нет, а существующие статьи местами устарели — пора это исправить. Если вам интересно, как разработать свой мод для Cyberpunk 2077 и собрать VR-жилет, добро пожаловать под кат.
Изначально у меня была мысль опубликовать на habr статью о современных VLIW-процессорах. Думаю, далеко не все читатели в курсе, что сейчас происходит ренессанс VLIW-подобных архитектур в области предметно-ориентированных ускорителей. Такие компании, как Xilinx, Synopsys и Cadence, даже предоставляют "конструкторы" для сборки VLIW-процессоров под задачи клиента. Но начало статьи, в контексте истории VLIW, планировалось посвятить неожиданной для меня исторической находке, давшей название заголовку заметки, которую вы сейчас читаете. Увы, сейчас совершенно некогда писать развернутую статью о VLIW-процессорах. Но и молчать о своей находке я тоже уже не могу!
В этом материале речь пойдёт об оптимизациях, которые включает опция -ffast-math при компиляции кода, написанного на C или C++, с использованием GCC 11 для x86_64 Linux (при применении других языков, операционных систем, процессоров могут использоваться немного другие оптимизации).
C++ - один из языков, который можно назвать "легендарным". Его история насчитывает несколько десятилетий, принципы программирования на нем революционным образом менялись не раз, а черновик стандарта уже разросся до 1800+ страниц мелкого шрифта.
На C++ есть много хороших библиотек. Но нередко изменения в самом языке делали неактуальными большие куски кода, потому что они становились менее надёжными и быстрыми по сравнению с функционалом в самом языке. Правки в стандарт имеют несоизмеримо более сильное влияние, чем любая библиотека.
В этой статье мы в учебных целях напишем для C++ поддержку нового ключевого слова defer, которое будет работать во многом аналогично такому в языках Go и Swift. Это будет сделано через правку исходного кода Clang.