Как стать автором
Обновить
-1
0
Глеб @snackTate

Пользователь

Отправить сообщение

Машинное обучение: мост между бизнесом и Data Science

Время на прочтение16 мин
Количество просмотров5.1K

Если последние несколько лет вы не жили на далёком острове без электричества и связи, то, вероятно, слышали о машинном обучении. Этот тренд было сложно не заметить. Каждый раз, когда мы говорим о беспилотных автомобилях, чат-ботах, AlphaGo или предиктивной аналитике, упоминается та или иная реализация машинного обучения. Хотя недостатка в историях и евангелистах нет, машинное обучение пока не стало в глазах бизнеса абсолютной необходимостью. В общественном восприятии применяемые в ML алгоритмы близки к научной фантастике, а подготовка конкретного плана внедрения ML по-прежнему остаётся высоким барьером.

Цель этой статьи — практические ответы, а не подготовка видения или продвижение тренда. Мы поговорим о зонтичном термине data science, о взаимосвязи его отраслей, основных задачах, которые может решать машинное обучение, а также о том, как эти задачи можно перевести на язык бизнеса. Также мы обсудим основные решения, которые нужно принять при найме специалистов, и выделим сложности, которые нужно учесть заранее
Читать дальше →

Распознавание именованных сущностей: механизм, методики, сценарии использования и реализация

Время на прочтение13 мин
Количество просмотров4.4K

Естественные языки сложны. А когда на горизонте появляется контекст, они становятся ещё сложнее. Возьмём для примера фамилию Линкольн. Некоторые сразу подумают о шестнадцатом президенте США, выдающейся исторической фигуре. Однако для других это производитель автомобилей с тем же названием. Одно простое слово имеет разные значения.

Мы, люди, без проблем различаем значения и категории. Это свидетельствует о нашем интуитивном понимании окружающего мира. Но когда дело касается компьютеров, эта, казалось бы, простая задача превращается в неоднозначную проблему. Подобные трудности подчёркивают необходимость надёжного распознавания именованных сущностей (named entity recognition, NER) — механизма, при помощи которого мы учим машины понимать различные лингвистические нюансы.

В этой статье мы расскажем о том, что такое NER, о его принципах работы и о том, как оно используется в реальной жизни. Также в ней мы прольём свет на различные методики NER и способы реализации модели NER.
Читать дальше →

Apache Superset 2024. Лучшие практики

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров11K

Привет, Хабр! Меня зовут Антон, я работаю аналитиком в отделе бизнес-аналитики и анализа доходности в ОТП Банке. В нашей новой статье мы погрузимся в мир Apache Superset 2024 и откроем вам лучшие практики и продвинутые методы работы с этим мощным инструментом. После прочтения вы научитесь мастерски кастомизировать Pivot-таблицы, создавать уникальные цветовые палитры для дашбордов, эффективно настраивать систему алертов и использовать удобные CSS/HTML-шпаргалки для ускорения работы. Эти знания помогут значительно повысить эффективность использования Apache Superset, делая вашу аналитическую работу не только производительной, но и визуально привлекательной. Итак, поехали.

Читать далее

Решаем простую статистическую задачу пятью способами

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров7K

Вот тут ув. @dimview на пальцах и Си объясняет за бутстрап решая несложную задачу. И в статистике существует 100500 разных тестов для (не)подтверждения нулевой гипотезы.

Давайте используем ряд самых распространеных и посмотрим на результаты. В конце сравним с бутстрапом. Изложение будет сопровождаться кратким выводом и объяснением основных тестов, их "ручной" реализацией и сравнением результата с готовыми тестами из пакета scipy.stats. В этом плане, мне кажется, повторение лишним не будет, т.к. позволит лучше понять и уяснить принцип и особенности тестов.

Сама задача звучит как: "И вот свежие результаты — в тестовой группе из 893 пришедших у нас что-то купили 34, а в контрольной группе из 923 пришедших что-то купили 28. Возникает вопрос — идти к начальству и говорить «в тестовой группе конверсия 3.81%, в контрольной группе 3.03%, налицо улучшение на 26%, где моя премия?» или продолжать сбор данных, потому что разница в 6 человек — ещё не статистика?"

Читать далее

А/В эксперименты. Ускорение вычислений с помощью бакетизации

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров3.2K

В данной статье мы рассмотрим, как бакетизация может существенно ускорить вычисления и представим график зависимости отношения времени на расчеты p-value без бакетизации к времени на расчеты с бакетизацией.

Время – деньги!

Интуитивное понимание пространств и ядер в машинном обучении: Часть 1

Уровень сложностиСложный
Время на прочтение9 мин
Количество просмотров10K

При изучении темы ядер (kernel) в ML/DS программы вузов, роадмэпы и видео на YouTube обычно рассматривают её через призму SVM, не говоря уже о всеми любимых курсах:). Казалось бы, это неплохо: вот тебе краткое объяснение и модель, которая использует ядра. Но, увы, в этих областях желательно понимать многие процессы интуитивно, так сказать — «тяжело в учении, легко в бою». К тому же, эта тема нечто большее, чем просто метод; она позволяет связать многие вещи в машинном обучении в единую картину через пространство, что я и хочу показать в этой статье.

Читать далее

Веб-скрапинг с Scrapy на Python

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров9.2K

Сегодня мы поговорим о хорошем инструменте для веб-скрапинга, который зарекомендовал себя, библиотеке Scrapy для Python.

Читать далее

Методы оптимизации в машинном и глубоком обучении. От простого к сложному

Уровень сложностиСложный
Время на прочтение29 мин
Количество просмотров18K

В данной статье представлен обзор различных популярных (и не только) оптимизаторов, которые применяются в машинном и глубоком обучении, в частности для обучения нейронных сетей. Мы рассмотрим их основную идею и ключевые особенности, переходя от простых к более сложным концепциям. Помимо этого, в самом конце вы сможете найти большое количество дополнительных источников для более детального ознакомления с материалом.

Читать далее

CADE — интересный способ поиска аномалий в многомерных данных

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров2.1K

CADE (Classifier Adjusted Density Estimation) - метод для приближения плотности вероятности, который можно эффективно использовать для поиска аномалий в данных. В этой статье я расскажу про этот метод, а также предоставлю пример реализации CADE на Python.

Читать далее

Мегагайд: культура работы с Git

Уровень сложностиПростой
Время на прочтение16 мин
Количество просмотров39K

Привет всем! Меня зовут Юля, я фронтенд-разработчик, наставник на курсах по JS и React и организатор профессионального сообщества Tbilisi JS. В Практикуме я помогаю студентам на курсе «React-разработчик».

За время работы в разных компаниях и над разными проектами я поняла, что Git — это не только (и не столько!) знание самой технологии и конкретных команд, но и определённая культура взаимодействия, практики, подходы, договорённости. Всё это помогает участникам команды лучше понимать друг друга и работать быстрее и чётче.

Поговорим как раз об этом — о том, что формирует культуру работы с Git: начнём с конвенций именования коммитов и закончим практиками работы в пуллреквесте. В конце статьи я поделюсь полезными ссылками на интерактивные обучалки, шпаргалки и гайды.

Читать далее

Кратко про Uplift-моделирование

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров4.8K

Uplift-моделирование — это метод оценки эффекта от воздействия, который использует алгоритмы ML для предсказания изменения вероятности интересуемого события под влиянием этого воздействия. Зачастую цель Uplift заключается в выявление тех клиентов, которые с наибольшей вероятностью изменят своё поведение в желаемую сторону в ответ на предложение.

Uplift-модели считают разницу между вероятностями наступления события в обработанной и контрольной группах. С ними можно предсказать результат и определить, был ли он действительно вызван проведенной кампанией.

Читать далее

Когда достаточно простого класса Python — взять и начать управлять ML-экспериментами

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров6.1K

Мы в ПГК занимаемся грузоперевозками, причем решаем различные транспортные задачи не только методами математической оптимизации, но и с помощью моделей машинного обучения. Наши дата-сайентисты проводят десятки экспериментов — в том числе и без необходимости прибегать к инструментам логирования вроде MLflow. В этом им помогает компактный Python-класс. Расскажем, как он устроен, и поделимся кодом.

Читать далее

Как обнаружить и устранить мультиколлинеарность с помощью Statsmodels в Питоне

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров7K

Привет, Хабр!

Мультиколлинеарность возникает, когда в модели множественной регрессии одна из независимых переменных может быть линейно предсказана с помощью других независимых переменных с высокой степенью точности. Это явление приводит к тому, что расчетные коэффициенты регрессии становятся нестабильными и их значения могут сильно изменяться в зависимости от включения или исключения других переменных в модель.

Высокая мультиколлинеарность может привести к значительному изменению коэффициентов при незначительных изменениях в данных или спецификации модели. Это усложняет интерпретацию коэффициентов, поскольку они могут значительно изменяться от одного анализа к другому.

Когда переменные сильно коррелированы, стандартные ошибки оценок коэффициентов увеличиваются. Это ведет к увеличению p-значений, что может ошибочно привести к заключению о том, что переменные не имеют значимого влияния на зависимую переменную, хотя на самом деле это не так.

В статье рассмотрим как обнаружить и устранить мультиколлинеарность с помощью Statsmodels в Питоне.

Читать далее

Основные принципы разработки (SOLID, KISS и т. д.)

Уровень сложностиПростой
Время на прочтение21 мин
Количество просмотров16K

В данной работе я сосредоточусь на изучении и сравнении ключевых принципов проектирования и разработки программного обеспечения. Моя цель - проанализировать эти принципы, выявить их достоинства, недостатки и области применения.

В общем вас ждет теория, ещё теория, словесные примеры и даже примеры кода (он на С++, но написан понятно).

А еще это полезно знать на собесах :-)

Читать далее

Как легко понять логистическую регрессию

Время на прочтение5 мин
Количество просмотров219K
Логистическая регрессия является одним из статистических методов классификации с использованием линейного дискриминанта Фишера. Также она входит в топ часто используемых алгоритмов в науке о данных. В этой статье суть логистической регрессии описана так, что она станет понятна даже людям не очень близким к статистике.

image
Читать дальше →

Как аппроксимировать любую функцию с помощью PyTorch

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров7.8K

При анализе данных и построении моделей машинного обучения часто возникает необходимость аппроксимировать сложные функции. PyTorch предоставляет удобные инструменты для создания и обучения нейронных сетей, которые могут быть эффективно использованы для этой цели. В этом посте мы рассмотрим простой пример аппроксимации функции с использованием PyTorch.

Читать далее

Автоматически выделяем кусочно-линейные тренды временного ряда

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров6.5K

Меня зовут Антон Сорока, я математик и аналитик данных.

Я хотел бы рассказать об алгоритме, который выделяет кусочно-линейный тренд из временного ряда и сам определяет точки изменения тренда. Другими словами, это алгоритм для автоматического кусочно-линейного приближения любой функции. Это может понадобиться, если вам важно анализировать линейные тренды ряда, но единственная линия явно недостаточно точно описывает ряд, и самостоятельно искать точки, где тренд менялся, неудобно. Реализация этого алгоритма есть в open-source библиотеке для анализа изменений временных рядов, написанной на Python.

Читать далее

Predictive Analytics — все, что нужно знать (обзор ключевых моментов)

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров10K

Predictive Analytics — или по-русски плановая или прогнозная аналитика, в основе которой лежит ответ на вопрос: «Что может произойти?»

Читать далее

Как выглядит эффект бэггинга на смещение и дисперсию

Время на прочтение12 мин
Количество просмотров4.2K

Часто суть статей о бэггинге сводится к тому, что вы обучаете множество деревьев решений на различных частях данных и усредняете прогнозы, чтобы получить окончательный прогноз, который улучшается из-за того, что дисперсия случайного леса меньше дисперсии одного дерева решений. Тексты с таким заключением содержат отличные демонстрации, код и много других мыслей. Но криптоаналитику и дата-сайентисту, доктору Роберту Кюблеру, переводом статьи которого мы делимся сегодня, часто не хватает хороших выкладок о причине, почему бэггинг — хорошая идея, а ещё не хватает демонстраций уменьшения дисперсии на реальных данных. Восполняем этот пробел к старту нашего флагманского курса по Data Science.

Читать далее

Оптимизация гиперпараметров за 5 секунд?

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров6.9K

Пока люди с самыми малыми вычислительными машинами в пустую тратят время на перебор гиперпараметров внутри библиотеки Scikit-learn – настоящие гении тайм-менеджмента выбирают TPE и Optuna. 

В этой статье мы рассмотрим самые популярные методы оптимизации Grid.Search и Random.Search, принципы Байесовской/вероятностной оптимизации, а также TPE в Optuna. В конце прописали небольшой словарик с функциями, атрибутами и объектами фреймворка, а также привели наглядный пример использования. 

Читать далее

Информация

В рейтинге
Не участвует
Откуда
Ставрополь, Ставропольский край, Россия
Дата рождения
Зарегистрирован
Активность