Введение
За последние годы компьютерное зрение набрало популярность и выделилось в отдельное направление. Разработчики создают новые приложения, которыми пользуются по всему миру.
Пользователь
PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.
Данная статья представляет собой лаконичное введение в PyTorch и предназначена для быстрого ознакомления с библиотекой и формирования понимания её основных особенностей и её местоположения среди остальных библиотек глубокого обучения.
В 2020 году библиотека Natasha значительно обновилась, на Хабре опубликована статья про актуальную версию. Чтобы использовать инструменты, описанные в этом тексте, установите старую версию библиотекиpip install natasha<1 yargy<0.13
.
Раздел про Yargy-парсер актуален и сейчас.
Natasha — это аналог Томита-парсера для Python (Yargy-парсер) плюс набор готовых правил для извлечения имён, адресов, дат, сумм денег и других сущностей.В статье показано, как использовать готовые правила из Natasha и, самое главное, как добавлять свои с помощью Yargy-парсера.
В очередной статье нашего цикла публикаций, посвященного интернет-разведке, рассмотрим, как операторы продвинутого поиска Google (advanced search operators) позволяют быстро находить необходимую информацию о конкретном человеке.
В комментариях к первой нашей статье, читатели просили побольше практических примеров и скриншотов, поэтому в этой статье практики и графики будем много. Для демонстрации возможностей «продвинутого» поиска Google в качестве целей были выбраны личные аккаунты автора. Сделано это, чтобы никого не обидеть излишним интересом к его частной жизни. Хочу сразу предупредить, что никогда не задавался целью скрыть свое присутствие в интернете, поэтому описанные методы подойдут для сбора данных об обычных людях, и могут быть не очень эффективны для деанонимизации фэйковых аккаунтов, созданных для разовых акций. Интересующимся читателям предлагаю повторить приведенные примеры запросов в отношении своих аккаунтов и оценить насколько легко собирать информацию по ним.
Всем привет.
С середины 2016 года мы проектируем и разрабатываем новое поколение платформы. Принципиальное отличие от первого поколения — поддержка API "тонкого" клиента. Если старая платформа предполагает, что на клиента при запуске загружается метаинформация о всем контенте, который доступен для абонента, то новая платформа должна отдавать срезы данных отфильтрованные и отсортированы для отображения на каждом экране/странице.
Высокоуровневая архитектура на уровне хранения данных внутри системы — постоянное хранение всех данных в централизованном реляционном SQL хранилище. Выбор пал на Postgres, тут никаких откровений. В качестве основного языка для разработки — выбрал golang.
У системы порядка 10м пользователей. Мы посчитали, что с учетом профиля теле-смотрения, 10М пользователей может дать сотни тысяч RPS на всю систему.
Это означает, что запросы от клиентов и близко не стоит подпускать к реляционной SQL БД без кэширования, а между SQL БД и клиентами должен быть хороший кэш.
Посмотрели на существующие решения — погоняли прототипы. Данных, по современным меркам у нас немного, но параметры фильтрации (читай бизнес-логика) — сложные, и главное персонализированные — зависящие от сессии пользователя, т.е. использовать параметры запроса как ключ кэширования в K-V кэше будет очень накладно, тем более пейджинг и богатый набор сортировок никто не отменял. По сути, под каждый запрос от пользователя формируется полностью уникальный набор отфильтрованных записей.
Для тех кому лень читать — ссылка на датасет внизу статьи.
What — анализ статей новостного ресурса Lenta.ru за последние 18 лет (с 1 сентября 1999 года). How — средствами языка R (с привлечением программы MySterm от Yandex на отдельном участке). Why… В моем случае, коротким ответом на вопрос "почему" будет "получение опыта" в Big Data. Более развернутым же объяснением будет "выполнение какого-либо реального задания, в рамках которого я смогу применить навыки, полученные во время обучения, а так же получить результат, который я бы смог показывать в качестве подтверждения своих умений".
To follow the path:
look to the master,
follow the master,
walk with the master,
see through the master,
become the master.
«Лучший способ писать — это переписывать» Пол Грэм, «The Age of the Essay»