Энергия бита, вес модели и три режима вычислений в ИИ-системах
Модель вводит три уровня состояния нейросервиса:
– параметры физически существуют;
– система под питанием и готова к запуску;
– идёт сам акт инференса.
Это не теорема, а логическая схема: три булевых предиката E, P, A и связи между ними. Они не претендуют на новизну в физике/математике — это инженерная абстракция, опирающаяся на факт, что записанная информация имеет массу-энергию и требует энергию для обработки.
В рамках принятых определений:
– параметры уничтожены → E_AI = 0;
– питание выключено → P_AI = 0;
– нет запроса → A_AI = 0.
Тонкости вроде квантовых флуктуаций и распределённых вычислений не учитываются: цель — чётко разделить «потенциальное существование» модели и «акт работы».
Три уровня анализа:
1. Физический — энергетическая цена различий (предел Ландауэра, масса информации, рассеяние).
2. Модельный — структура состояний (параметры, питание, вычисление).
3. Интерпретационный — логическое разбиение состояний для анализа вычислительных систем.
Переменные
θ — вектор параметров модели (n-мерный).
ρ_θ(r, t) — эффективное распределение масс-энергии параметров в точке (r, t)(агрегированное распределение в памяти, а не строгое физическое поле).
H — аппаратная среда (память, блок питания, линии связи).
H_on(t) — «железо включено и готово к вычислениям».
x — входные данные; y — выход.
f_θ — функция x → y, реализуемая моделью.
Предикаты состояний
1. Существование (E_AI)
Условие: ∭ ρ_θ(r, t) dV dt > 0
Смысл: параметры физически присутствуют.
Флаг: E_AI = 1, пока носитель цел.
2. Потенциал (P_AI)
Условие: H_on(t) AND E_AI.
Смысл: система под питанием и готова к работе.
Флаг: P_AI = 1, когда питание доступно.
3. Акт инференса (A_AI)
Условие: P_AI(t) AND Input(x, t).
Смысл: вычисление в процессе.
Флаг: A_AI(t) = 1 только во время обработки запроса.
Три режима
1. До входа:
E_AI = 1, P_AI = 1, A_AI = 0 → модель существует, но простаивает.
2. Без питания:
E_AI = 1, P_AI = 0, A_AI = 0 → параметры сохранены, система неактивна.
3. При запросе:
A_AI(t) = 1 → идёт вычисление, рассеивается энергия.
Физические константы
Минимальная энергия для стирания одного бита (Ландауэр):
E_min = k * T * ln(2) ≈ 2.85 × 10⁻²¹ Дж (при T = 300 K).
Эквивалентная масса бита (E = mc²):
m_min = E_min / c² ≈ 3.2 × 10⁻³⁸ кг.
Масса модели (пример: n = 1.5 × 10¹¹ параметров, b = 16 бит на параметр):
M_θ = n * b * m_min ≈ 7.7 × 10⁻²⁵ кг.
Модель имеет ненулевую массу даже в выключенном состоянии (E_AI).
Питание даёт потенциал (P_AI), но само по себе не запускает вычисления.
Инференс (A_AI) требует энергии и порождает тепло.
Даже молчащий сервер тяжелее вакуума на вес своего бит-универсума.
📁 Zenodo









