Обнаружение птиц с помощью Azure ML Workbench

Работаем с фото и видео
Гораздо привлекательнее выглядит использование R-интерфейсов к TensorFlow и Keras с бекендами на выбор (TensorFlow, Theano, CNTK), подробной документацией и множеством примеров. В этом сообщении будет разобрано решение задачи сегментации изображений на примере соревнования Carvana Image Masking Challenge (победители), в котором требуется научиться отделять автомобили, сфотографированные с 16 разных ракурсов, от фона. "Нейросетевая" часть полностью реализована на Keras, за обработку изображений отвечает magick (интерфейс к ImageMagick), параллельная обработка обеспечивается parallel+doParallel+foreach (Windows) или parallel+doMC+foreach (Linux).
В данной статье будет рассказываться о применении библиотеки машинного зрения (openCV) для удаления эффекта радиального искажения (дисторсии) с фото и видео. Данный эффект также известен как эффект рыбьего глаза (fisheye) или distortion. Решение написать данную статью было принято после нескольких дней поиска информации в интернете. Не смотря на то, что есть гайды на английском языке, они не объясняют как правильно установить openCV, чтобы все работало. В статье присутствует готовый код.
Сразу привожу фото итогового результата. Слева оригинальное фото, справа — обработанное:
Привет! Пока мы ждём субботу и Avito Data Science Meetup: Computer Vision, расскажу вам про моё участие в соревновании по машинному обучению KONICA MINOLTA Pathological Image Segmentation Challenge. Хотя я уделил этому всего несколько дней, мне повезло занять 2 место. Описание решения и детективная история под катом.
Хочу поделиться очень простым и эффективным методом ресайза изображении, который работает за константное время относительно размера исходного изображения и дает неожиданно качественный результат. Метод применим для любых языков и приложений.
Для начала давайте порассуждаем логически. Если вы делаете ресайз изображения, наверное вы хотите чтобы результат хотя бы отдаленно напоминал оригинал. Для этого нужно учесть как можно больше информации из исходного изображения. Вы слышали о методе «ближайшего соседа»? В этом методе для каждой точки конечного изображения просто берется какая-то одна точка из исходного изображения в неизменном виде.
Уменьшение изображения 4928×3280 до 256×170 ближайшим соседом.
Рекомендую смотреть примеры из статьи в браузере в масштабе 100% и без ретины. То есть по максимуму исключить ресайз при просмотре.
Результат не представляет ничего хорошего. Изображение дерганое, зернистое, даже трудно понять что на нем изображено. Особенно если на исходном изображении было много мелких деталей или оно само было зернистым. Почему так получается? Потому что в конечном изображении было учтено очень мало информации из исходного. Если условно отметить на исходном изображении те точки, которые попадают в конечное, получится вот такая сеточка:
Метод (алгоритм) Виолы и Джонса [1] является одним из способов выявления границ объектов на изображении. Хотя алгоритм, разработанный П. Виолой и М. Джонсом еще в 2001 году, был первоначально ориентирован на быстрый поиск лиц на изображениях, сейчас разнообразные вариации этого популярного алгоритма с успехом используются в различных задачах поиска границ:
а также иных объектов, присутствующих на изображениях примерно в одном ракурсе. Такого рода популярность модификаций метода Виолы и Джонса объясняется высокой точностью поиска объектов и высокую устойчивость как к геометрическим искажениям, таки и к изменениям яркости.
Мы рады пригласить вас на встречу специалистов по анализу данных, которая пройдет в московском офисе Avito 28-го октября. Митап посвящен компьютерному зрению. Вы сможете узнать о передовых достижениях в задачах распознавания лиц и сегментации изображений, о real-time адаптации нейросетевых и классических алгоритмов, а также мы представим наш сервис — AvitoNet. Подробная программа и ссылка на регистрацию под катом.
Привет, Хабр! Сегодня я хочу рассказать вам, как можно изменить свое лицо на фото, используя довольно сложный пайплайн из нескольких генеративных нейросетей и не только. Модные недавно приложения по превращению себя в даму или дедушку работают проще, потому что нейросети медленные, да и качество, которое можно получить классическими методами компьютерного зрения, и так хорошее. Тем не менее, предложенный способ мне кажется очень перспективным. Под катом будет мало кода, зато много картинок, ссылок и личного опыта работы с GAN'ами.
Привет, Хабр! Мы продолжаем нашу традицию и снова выпускаем ежемесячный набор рецензий на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество ODS!
Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Напоминаем, что описания статей даются без изменений и именно в том виде, в котором авторы запостили их в канал #article_essence. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.