Как стать автором
Поиск
Написать публикацию
Обновить
748.32

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Как Яндекс создавал новую end2end-модель генерации коротких видео

Уровень сложностиСложный
Время на прочтение25 мин
Количество просмотров5.9K

Приложение Шедеврум начало использовать новую end2end-модель YandexART (Vi). Она позволяет создавать видео по текстовому запросу и учитывает взаимосвязь между кадрами, делая видео более связными, плавными и реалистичными, чем при использовании предыдущей модели. Предыдущее решение было основано на использовании эвристик для добавления движения камеры, где видео создавалось кадр за кадром с применением модели генерации изображений, что приводило к значительным изменениям в содержании каждого кадра. 

В этой статье поделимся нашим опытом разработки первых версий end2end-модели YandexART (Vi): 

— расскажем, почему изначально выбрали работу в пиксельном пространстве;

— опишем методы инженерных оптимизаций, которые помогли в обучении моделей;

— обсудим проблемы, с которыми столкнулись в процессе разработки, и как их решали;

— в завершение расскажем, почему в итоге решили отказаться от пиксельного пространства в пользу латентного и поделимся нашими планами на будущее.

И так как на Хабре не принято вставлять гифки и видео до ката, примеры новой модели вас ждут под ним. 

Посмотреть примеры

Эй, компьютер, создай-ка мне шрифт

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров7.4K

Это история о том, как я с нуля осваивал создание генеративных моделей МО, попутно обучая компьютер создавать шрифты. Да, настоящие типографские шрифты, состоящие из набора заглавных глифов. Созданная мной модель получает на входе описание шрифта и создаёт на выходе файл с их готовым набором. Назвал я свой проект FontoGen.

Выше вы видите несколько примеров шрифтов, сгенерированных моделью FontoGen.

Ну а дальше я подробно опишу всю историю.
Читать дальше →

Как подружить PyTorch и видеокарты AMD с помощью pytorch_dlprim

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров7.1K


Когда начинаешь изучать или использовать машинное обучение, то думаешь, как приспособить те устройства, которые есть в наличии, чтобы снизить свои траты на вход. И, в частности, обладатели довольно мощных старых карт AMD (типа AMD Fury), на которых легко идут довольно тяжёлые игры типа Cyberpunk 2077 или Atomic Heart, сталкиваются с тем, что эти GPU бесполезны для PyTorch и других фреймворков машинного обучения. Да и самые современные карты AMD 7900-й серии работают с PyTorch только из под Linux. Также есть редкие карты других брендов, типа Intel Arc или китайские, которые хотелось бы использовать для машинного обучения.

Итак, в этой статье я приведу подход, который в некоторых случаях может помочь. Он сыроват, но других работающих вариантов под PyTorch я не нашёл. Итак, речь пойдёт о проекте израильского разработчика Артёма Бейлиса (Тонких) pytorch_dlprim.
Как сумрачный гений плюсов подключает все железки к DL

Самопаркующийся авто за 500 строк кода

Уровень сложностиСредний
Время на прочтение21 мин
Количество просмотров20K



TLDR


В этой статье мы научим авто самостоятельно парковаться с помощью генетического алгоритма.


Мы создадим первое поколение авто с произвольными геномами, которое будет вести себя примерно так:





Примерно на сороковом поколении авто начнут понимать, что такое авто-парковка, и начнут приближаться к парковочному месту:




Читать дальше →

Как Яндекс учит Алису понимать пользователей с особенностями речи

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров6.4K

В далёком 2018 году мы представили наше первое умное устройство с Алисой — Яндекс Станцию. С тех пор пользователи успешно взаимодействуют с виртуальным ассистентом с помощью голосовых команд. Но, к сожалению, бывают и сложности. Алиса не всегда правильно понимает запрос: ей могут мешать шумы, сливающиеся голоса или невнятно произнесённая фраза. Эта проблема особенно актуальна для пользователей с различными речевыми нарушениями — например, с заиканием, ДЦП, последствиями инсульта или травмы. Часто речь искажается так, что Алиса не понимает её, а значит, пользователь сталкивается с ограничениями.

Меня зовут Даня, я представляю команду, которая разрабатывает в Алисе технологию распознавания речи. Сегодня я расскажу небольшую историю о том, как мы решали описанную выше проблему. Пожалуй, было бы слишком смело предполагать, что такую сложную задачу можно навсегда победить одним быстрым решением (даже людям не всегда удаётся корректно понимать речь с особенностями). Тем не менее нам удалось сократить разрыв между точностью распознавания обычной речи и речи с искажениями в среднем на 20%. При некоторых лёгких формах нарушений звукопроизношения Алиса теперь понимает речь не хуже человека, а при тяжёлых формах нарушений — даже лучше. Это самый большой шаг в этом направлении с момента создания нашего помощника. 

Под катом вы не найдёте хардкорных подробностей обучения нейросетевых моделей, потому что основная сложность таилась вовсе не в вопросах применяемых технологий. Ключом к успеху стала помощь сообщества и экспертов.

Читать далее

В 48 собесах от оффера в Гугл

Уровень сложностиСредний
Время на прочтение21 мин
Количество просмотров20K

Здравствуй, хабр! Что-то я давно не писал, отбился от рук, а ведь когда-то мы целый курс машинного обучения на Хабре вели. Расскажу про свой недавний заход по собесам, что спрашивали, какие выводы сделал. Контекст: Applied Machine Learning science (в том числе этот ваш Generative AI), Нидерланды, уровень синьор+. Я долго получал отказы, старался не унывать и в конце таки нашил лычку Staff GenAI Field Solutions Architect в Google Cloud. Тут поделюсь статистикой собесов, полезными ресурсами и, конечно, всякими советами.

Читать далее

Импортозамещение по-русски на 146%. AR-очки

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров14K

Меня зовут Илья Зеленский. Помните басню Крылова «мартышка и очки»? Смысл басни был, как важно владеть знаниями и правильно применять их. Поэтому я хочу поделиться своим опытом запуска действительно сложного продукта.

Читать далее

Панорама матричных расширений: от x86 до RISC-V

Время на прочтение15 мин
Количество просмотров10K

Матричное расширение ISA CPU… Что это и что оно делает? Уже из названия понятно, что это расширение позволяет ускорять операции над матрицами на CPU. Но задумывались ли вы когда-нибудь, какие они бывают, когда появились, кто и как их создает?

Меня зовут Валерия Пузикова, я эксперт по разработке ПО в компании YADRO, к.ф.-м.н. Около 15 лет разрабатываю численные методы для решения задач линейной алгебры, дополненной и виртуальной реальности, аэрогидродинамики. Вычислительные задачи таких классов всегда приводят к работе с матрицами больших размерностей, поэтому критически важным становится ускорение матричных операций, в том числе с помощью расширений. 

Матричные расширения появились не так давно — чуть более трех лет назад. Несмотря на это, они есть у каждой уважающей себя процессорной архитектуры, в том числе и у относительно молодой открытой RISC-V. Почему их так много и чем они отличаются? Поддерживаются ли разреженные матрицы? Об этом и многом другом вы узнаете из статьи. Приготовьтесь, будет интересно и (спойлер!) без многоэтажных формул. 

Читать далее

Работаем с PyTorch на CPU

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров7.7K


В этой статье мы рассмотрим железо, настройки, подводные камни и неочевидные вещи, которые позволят выжать всё из вашего процессора для как можно более комфортной работы PyTorch на CPU. Даже если у вас есть видеокарта, поддерживаемая PyTorch, вы сможете увеличить продуктивность компа через распараллеливание нагрузки на CPU и видеокарту.
Поехали!

Я тебя с вертухи сломаю, если ещё раз заговоришь об ИИ

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров53K

Последние инновации в сфере ИИ, наиболее примечательными из которых стали проекты наподобие GPT-4, очевидно, могут иметь далеко идущие последствия для общества: от утопического избавления от монотонного труда до антиутопического ущерба для работы художников в капиталистическом обществе, а также до экзистенциальных угроз самому человечеству.

Лично я получил формальное образование дата-саентиста, даже выиграв в высококонкурентном конкурсе по машинному обучению в одном из лучших университетов Австралии и написав магистерскую, для которой создал в MATLAB с нуля собственные библиотеки. Я не гений в этой сфере, но, очевидно, лучше большинства конкурентов, то есть практиков вроде меня; я не могу, сидя в пещере, создавать собственные библиотеки на C, но умею читать учебники, реализовывать готовые решения на языках высокого уровня и использовать библиотеки, написанные элитными организациями.

Поэтому с глубочайшим сожалением должен объявить, что следующий человек, который начнёт говорить мне о реализации ИИ, получит от меня сеанс живительных процедур над позвоночником; иными словами, я сломаю ему нафиг шею. Мне очень-очень жаль.

Читать далее

Яндекс разработал и выложил в опенсорс YaFSDP — инструмент для ускорения обучения LLM и сокращения расходов на GPU

Время на прочтение12 мин
Количество просмотров25K

Сегодня мы выкладываем в опенсорс наш новый инструмент — алгоритм YaFSDP, который помогает существенно ускорить процесс обучения больших языковых моделей.

В этой статье мы расскажем о том, как можно организовать обучение больших языковых моделей на кластере и какие проблемы при этом возникают. Рассмотрим альтернативные методы ZeRo и FSDP, которые помогают организовать этот процесс. И объясним, чем YaFSDP отличается от них.

Читать далее

Повышаем интерпретируемость SHAP-графиков

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров7.8K

Привет, Хабр! В моей работе часто возникают задачи на исследование влияния факторов, на которые мы можем оказывать продуктовое влияние, на целевые метрики сообществ ВКонтакте. Один из возможных способов решения подобных задач — обучение ML‑моделей и последующий анализ значимости признаков в них. Базовым подходом видится использование графиков из библиотеки shap. Однако наиболее популярным является summary_plot, хотя он и повышает интерпретируемость модели, но отвечает не на все возникающие вопросы.

Меня зовут Сергей Королёв, я продуктовый аналитик в бизнес‑юните СМБ в VK, занимаюсь улучшением опыта предпринимателей на нашей платформе. В этой статье я представлю свое решение по кастомизации shap.dependence_plot для простого восприятия графиков влияния факторов на целевую метрику.

Читать далее

Не статья, а позорище какое-то! Sentiment-анализ комментариев из блога Selectel на Хабре

Время на прочтение12 мин
Количество просмотров9.2K

Каждый месяц в блоге Selectel на Хабре появляется 35-40 публикаций. Сбор статистики по ним мы давно автоматизировали, но до последнего времени не охватывали sentiment-анализ, то есть оценку тональности комментариев средствами машинного обучения.

У нас есть своя ML-платформа, серверное железо и опыт в развертывании IT-инфраструктуры. Вполне логично, что в какой-то момент возник вопрос: что, если проанализировать эмоциональный окрас комментариев в блоге на Хабре с помощью LLM?

Под катом рассказываем, что из этого получилось.
Читать дальше →

Ближайшие события

Разбор документа про AGI от Леопольда Ашенбреннера, бывшего сотрудника OpenAI

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров46K

Леопольд Ашенбреннер, бывший сотрудник OpenAI из команды Superalignment, опубликовал документ под названием «Осведомленность о ситуации: Предстоящее десятилетие», в котором он делится своим видением будущего ИИ. Основываясь на своих знаниях в этой области, Ашенбреннер предсказывает стремительное развитие искусственного интеллекта в ближайшее десятилетие.

Мы прочитали этот документ объемом в 165 страниц за вас. В этой статье расскажем о ключевых идеях Ашенбреннера и о его прогнозах на будущее искусственного интеллекта.

Читать далее

Как мы готовим RL для Alignment в больших языковых моделях: опыт команды YandexGPT

Время на прочтение28 мин
Количество просмотров18K

Сегодня через API стала доступна новая модель YandexGPT 3 Lite. Одним из ключевых этапов её обучения, как и в случае с другими недавними моделями, стал этап выравнивания (Alignment), включающий в том числе стадию обучения с подкреплением (RL). Пожалуй, без этого этапа мы бы не смогли добиться такого роста в качестве, который был необходим для запуска новых возможностей и сервисов (например, Нейро). Поэтому эту статью мы полностью посвятим особенностям выравнивания моделей. 

На тему Alignment и RL было написано уже немало статей. Кажется, любой ML-инженер уже, так или иначе, сталкивался или читал о них. Поэтому мы хоть и напомним базовую информацию, но всё же сфокусируемся на тех деталях реализации, которые не на слуху. 

Читать далее

Что такое Универсальный решатель проблем — программа из 1955 года

Время на прочтение8 мин
Количество просмотров21K
Когда Герберт Саймон и Алан Ньюэлл в 1955 году начали придумывать Logic Theorist, понятия «искусственный интеллект» ещё не существовало.

Правда, на семинаре, где впервые прозвучало это определение, их разработки приняли с изрядной долей скепсиса, совершенно не разглядев, что данная программа — это на практике ровно то, что было придумано в теории.

А потом они решили сделать ещё более крутую штуку — программу, которая сможет решить любую проблему, поставленную перед людьми. Они назвали её GPS — General Problem Solver. По идее, у них должен был получиться разумный электронный советчик, который точно знает, как лучше всего поступить в сложной ситуации из серии «аккумулятор на машине разрядился, а вам срочно нужно отвезти ребёнка в детский сад». Ну или дать ответ на главный вопрос жизни, Вселенной и всего такого.

Но вот получилось вообще не то.

image
«Ты только посмотри, что GPS предлагает нам сделать!»
Читать дальше →

Большие языковые модели гораздо линейнее, чем мы думали

Уровень сложностиСложный
Время на прочтение4 мин
Количество просмотров19K

Хабр, привет! Это снова Антон Разжигаев, аспирант Сколтеха и научный сотрудник лаборатории Fusion Brain в Институте AIRI, где мы продолжаем углубляться в изучение языковых моделей. В прошлый раз мы выяснили, что эмбеддинги трансформеров-декодеров сильно анизотропны. На этот раз я бы хотел рассказать об их удивительной линейности, ведь нашу статью про обнаруженный эффект («Your Transformer is Secretly Linear») несколько дней назад приняли на международную конференцию ACL!

Читать далее

Создаём свою стример-тян из зефира и палок

Уровень сложностиСредний
Время на прочтение127 мин
Количество просмотров34K

Наверняка вы слышали о нашумевшей в своё время ИИ стримерше NeuroSama. Однако мое внимание привлекало не само шоу и эти нашумевшие самые «крутейшие» моменты стримов, а сам факт того, что нейросеть реально может полностью автономно и полноценно вести стрим, удерживая внимание зрителей! Меня очень заинтересовала такая задумка, и я решился её повторить!

В этой статье я расскажу о попытке создать свою нейро-тян для русского сегмента, которая сможет автономно и без перерывов играть и вести трансляции на различных стриминг-платформах и буллить кожаных мешков конечно же развлекать зрителей и игроков, не получая баны! В результате получился самый настоящий гомункул киборг-убийца (мозгов) квадратных людей, поэтому запасайтесь бочкой кваса и ванной попкрона, как и в прошлый раз, приключение обещает быть жарким, но не только потому, что скоро лето, а ещё потому, что сейчас весна (и сопутствующее весеннее обострение), ведь мы с вами будем создавать настоящую (виртуальную) девушку-стримера!

Может, немного опоздал с трендом, но не пропадать же добру просто так! Кому-нибудь да пригодится (хотя бы для того, чтобы посмеяться или кринжануть с человека, который год занимался никому не нужной фигнёй).

Статья получилась без преувеличения огромной из-за совмещения просто ТУЧИ разных технологий и необходимости погружения в тонкости некоторых, так что отправьте ссылку себе на комп, расположитесь поудобнее и предупредите свою попу, что она рискует не отрываться от стула на протяжении целого часа!

Будет весело, сложно и очень интересно как опытному «бойцу», так и простому обывателю!

Читать далее →

ChatGPT как мутная ксерокопия Интернета

Время на прочтение13 мин
Количество просмотров26K

В 2013 году сотрудники одной немецкой строительной компании заметили кое-какую странность в работе корпоративного аппарата Xerox. Всякий раз, когда копировалась планировка этажа в стоящемся здании, копия отличалась от оригинала в одном тонком, но в очень важном аспекте. В оригинальной версии планировки в доме различались три комнаты, и у каждой из них в прямоугольнике была подписана площадь этой комнаты: 14,13, 21,11 и 17,42 квадратных метра соответственно. Но на ксерокопии было написано, что все три комнаты имеют площадь по 14,13 квадратных метра. Компания обратилась к информатику Давиду Кризелю с просьбой, почему получается такой, казалось бы, немыслимый результат. Здесь требовалась именно консультация информатика, так как в современных аппаратах не применяется физический ксерографический процесс, впервые популяризованный в 1960-е. Вместо этого аппарат создаёт цифровую копию документа, а затем распечатывает полученный файл (изображение). При этом учтём, что для экономии дискового пространства почти все цифровые файлы изображений подвергаются сжатию — и разгадка этого таинственного случая начинает напрашиваться сама собой.

Читать далее

Заставляем ChatGPT быть эгоистичным и решать дилемму заключенного, в которой есть котики

Время на прочтение10 мин
Количество просмотров8.3K

Успехи машинного обучения наталкивают на мысль, что ИИ, стоящий в развитии на пару ступеней выше человека, уже не за горами. Станет он нам новым лучшим другом или скорее чем-то вроде Скайнета? Мы не знаем будущего, но можем проверить, насколько железный мозг дружелюбен в настоящем.

Привет! Мы в Selectel часто используем ИИ и знаем, что это хороший помощник, которому можно доверить часть рутины. А как насчет человеческих качеств? Чтобы выяснить это, сыграем с ним в классическую математическую игру, с помощью которой ученые уже больше 70 лет исследуют альтруизм и эгоизм, способность к эмпатии и готовность предать — характеристики, присущие человеку.
Читать дальше →

Вклад авторов