Как стать автором
Поиск
Написать публикацию
Обновить
769.66

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Зачем компаниям ML? Разбираемся на примере Netflix

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров7.7K

Привет, Хабр! Я Ефим, MLOps-инженер в отделе Data- и ML-продуктов Selectel. В последнее время, куда ни глянешь, только и разговоров, что про ML. Но всегда хочется увидеть результаты работы на практике. Если с IT-гигантами все понятно, то зачем ML, скажем, компаниям из индустрии развлечений? В статье попробуем разобраться с этим (насколько позволят открытые источники) на примере Netflix.
Читать дальше →

Главные отличия PCA от UMAP и t-SNE

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров8.3K

Здесь будет рассказано о главных отличиях самого старого и базового алгоритма снижения размерности - PCA от его популярных современных коллег - UMAP и t-SNE. Предполагается, что читатель уже предварительно что-то слышал про эти алгоритмы, поэтому подробного объяснения каждого из них в отдельности приведено не будет. Вместо этого будут объяснены самые важные для практики свойства этих алгоритмов и то, на какие связанные с ними подводные камни можно налететь при неосторожности. Все особенности будут описаны на примерах, с минимумом теории; те пытливые умы, что почувствуют в процессе чтения жажду математической строгости, смогут удовлетворить её в литературе, ссылки на которую будут даны по ходу дела и в конце статьи.

Читать далее

На практике пробуем KAN – принципиально новую архитектуру нейросетей

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров41K

На днях ученые из MIT показали альтернативу многослойному перцептрону (MLP). MLP с самого момента изобретения глубокого обучения лежит в основе всех нейросетей, какими мы их знаем сегодня. На его идее в том числе построены большие языковые модели и системы компьютерного зрения.

Однако теперь все может измениться. В KAN (Kolmogorov-Arnold Networks) исследователи реализовали перемещение функций активации с нейронов на ребра нейросети, и такой подход показал блестящие результаты.

Читать далее

Питер Норвиг: автор лучшего в мире учебника по ИИ

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров20K


Питер Норвиг (Peter Norvig) — выдающийся учёный, один из отцов современной ИИ-разработки. После сингулярности ИИ точно оставит его в живых в знак благодарности.

Норвиг не только хороший программист, но и теоретик программирования, учёный и преподаватель, в длинном резюме перечислено 58 статей, а количество цитирований на сегодняшний день составляет 78 830.

Основное признание Норвиг получил как автор учебника «Искусственный интеллект: современный подход», который в наше время считается самым популярным учебником по ИИ в вузах. Эта фундаментальная работа претерпела уже четыре переиздания.
Читать дальше →

Размер имеет значение. Как Ozon автоматизировал измерение товаров на складах

Время на прочтение16 мин
Количество просмотров12K

Сотрудники каждого склада, которые хотят выстроить логистические процессы оптимальным образом, должны знать фактические габариты и вес товаров, которые хранятся на его площадях. Совокупность габаритов и веса товара в Ozon называют объёмно-весовыми характеристиками (ОВХ). 

Мы разработали, собрали и интегрировали в операционные процессы складов Ozon устройства для измерения габаритов и веса товаров. Об этом мы писали ранее. Но к идее создания своего решения пришли не сразу.

Читать далее

Генеративные 3D-модели

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров12K

Салют, Хабр! На связи Игорь Пасечник — технический лид направления XR RnD SberDevices. Сегодня я хочу рассказать про одно из наших направлений исследований — разработку генеративных моделей для 3D-контента. 

Современные методы генерации 2D-контента, такие, как 2D-диффузионные модели (Kandinsky 3.0, SDXL), уже достигли впечатляющих результатов и несколько лет являются неотъемлемой частью современности, генеративные видео модели также активно развиваются. Кульминацией развития таких подходов, вероятно, станет представленная не так давно модель Sora. Тем не менее большинство из этих моделей до сих пор испытывают проблемы при генерации консистентных 3D-сцен и объектов.

С другой стороны стороны, существует конвенциональная 3D-графика, а также огромная индустрия и множество прикладных областей, включая игры, XR, дизайн, архитектуру, маркетинг, 3D-проектирование, где используются пайплайны на основе 3D-графики и производится контент на их основе. Методы создания 3D-моделей, такие, как ручное моделирование, 3D-сканирование и фотограмметрия, могут быть трудоёмкими, дорогостоящими и требующими специальных навыков. 3D-продакшн в общем виде использует множество инструментов для создания и рендеринга тяжелой фотореалистичной графики, адаптация генеративных 3D-пайплайнов под такие подходы достаточно тяжела из-за множества инструментов, которые такие пайплайны должны поддерживать. Также адаптация больших латентных генеративных 2D-моделей вроде SORA для прикладных задач фотореалистичной графики может стать альтернативой классическми пайплайнам на основе физического моделирования. Тем не менее, на текущий момент пайплайны работы с графикой, использующие базовый набор примитивов, включая меши, PBR-текстуры, простые модели освещения, закрывают множество прикладных задач и также могут быть востребованы у массового пользователя в случае их демократизации.

Читать далее

Яндекс запустил Нейро. Рассказываем, как он работает

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров87K

Сегодня мы запустили новый сервис Нейро — новый способ поиска ответов на вопросы. Пользователь может задать Нейро любой вопрос, а тот сам подберёт подходящие материалы в Поиске, проанализирует их и соберёт найденную информацию в одном ответе, подкрепив его ссылками на источники. Нейро объединил опыт Яндекса в создании поисковых технологий и больших языковых моделей. 

Меня зовут Андрей Сюткин, и я отвечаю за ML-трек в Нейро. В этой статье покажу, как выглядит архитектура Нейро и как формируются ответы на технологическом уровне. Ну и, конечно же, поговорим о нейросетях, в том числе о YandexGPT 3, без обучения которых новый сервис просто не увидел бы свет.

Читать далее

Создаем изометрические уровни игры с помощью Stable Diffusion

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров25K

Всем привет. Сегодня я покажу вам, как можно создавать 2.5D уровни в изометрии с помощью быстрого прототипирования техникой grayboxing, и генеративного искусственного интеллекта, а именно Stable Diffusion. Практически весь процесс, описываемый в статье, довольно легко автоматизируется.

Если интересно, добро пожаловать под кат.

Читать далее

Kandinsky 3.1 — новая быстрая модель генерации изображений по тексту

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров33K

Прошёл ровно год с момента релиза модели Kandinsky 2.1 — именно эта модель принесла известность нашей исследовательской группе Sber AI Research и дала толчок развитию всей линейки моделей Kandinsky. В честь этой даты мы выпускаем новую версию модели Kandinsky 3.1, о которой я расскажу подробнее в этой статье.

Читать далее

Введение в нейросети: что, зачем и как?

Уровень сложностиСредний
Время на прочтение25 мин
Количество просмотров56K

Это модное слово всё чаще используется в разговорной речи: обывателей плотнее окутывают угрозами бунта искусственного интеллекта и войны с роботами — с одной стороны, и рекламой нейросетевых продуктов — с другой. Отдельный котёл в аду — для тех, кто впаривает «курсы дата‑саентистов». А когда бедный юзернейм в поисках истины обращается к Гуглу своему любимому поисковику — то вместо простого ответа на простой вопрос, получает ещё больше вопросов — таких как тензорфлоу, сигмоида и, не дай Бог, линейная алгебра.

Как же нейросети рисуют картинки?

Как устроено пространство, в котором думают языковые модели?

Уровень сложностиСложный
Время на прочтение5 мин
Количество просмотров20K

С момента выхода первой статьи «Attention is All You Need» я с жадностью и любопытством, присущими любому исследователю, пытаюсь углубиться во все особенности и свойства моделей на базе архитектуры трансформер. Но, если честно, я до сих пор не понимаю, как они работают и почему так хорошо обучаются. Очень хочу разобраться, в чём же причина такой эффективности этих моделей, и есть ли предел их возможностей?

Такому изучению трансформеров «под микроскопом» и посвящена наша научная работа, только что представленная на конференции EACL 2024, которая проходила на Мальте — «The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models». В этой работе мы сфокусировались на наблюдении за пространством эмбеддингов (активаций) на промежуточных слоях по мере обучения больших и маленьких языковых моделей (LM).

Читать далее

Quantization Deep Dive, или Введение в современную квантизацию

Уровень сложностиСредний
Время на прочтение16 мин
Количество просмотров31K

Привет! Меня зовут Василий Землянов, я занимаюсь разработкой ML-инфраструктуры. Несколько лет я проработал в команде, которая делает споттер — специальную маленькую нейросетевую модельку, которая живёт в умных колонках Яндекса и ждёт от пользователя слова «Алиса». Одной из моих задач в этой команде была квантизация моделей. На пользовательских устройствах мало ресурсов, и мы решили, что за счёт квантизации сможем их сэкономить — так в итоге и вышло.

Потом я перешёл в команду YandexGPT. Вместо маленьких моделей я стал работать с очень крупными. Мне стало интересно, как устроена квантизация больших языковых моделей (LLM). Ещё меня очень впечатляли истории, где люди берут гигантские нейросети, квантизируют в 4 бита и умудряются запускать их на ноутбуках. Я решил разобраться, как это делается, и собрал материал на доклад для коллег и друзей. А потом пришла мысль поделиться знаниями с более широкой аудиторией, оформив их в статью. Так я и оказался на Хабре :)

Надеюсь, погружение в тему квантизации будет интересно как специалистам, так и энтузиастам в сфере обучения нейросетей. Я постарался написать статью, которую хотел бы прочитать сам, когда только начинал изучать, как заставить модели работать эффективнее. В ней мы подробно разберём, зачем нужна квантизация и в какой момент лучше всего квантизовать модель, а ещё рассмотрим разные типы данных и современные методы квантизации.

Читать далее

Как мы научили YandexGPT пересказывать видео

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров19K

Порой бывает сложно перематывать длинный ролик в надежде найти хоть что-то интересное или тот самый момент из Shorts. Или иногда хочется за ночь узнать, о чём шла речь на паре научных конференций. Для этого в Браузере есть волшебная кнопка — «Пересказать», которая экономит время и помогает лучше понять, стоит ли смотреть видео, есть ли в нём полезная информация, и сразу перейти к интересующей части.

Сегодня я расскажу про модель, которая быстро перескажет видео любой длины и покажет таймкоды для каждой части. Под катом — история о том, как мы смогли выйти за лимиты контекста модели и научить её пересказывать даже очень длинные видео.

Читать далее

Ближайшие события

Настоящее предназначение OpenAI SORA: как и зачем симулировать «Матрицу» для ChatGPT

Уровень сложностиСредний
Время на прочтение41 мин
Количество просмотров109K

Ну что, уже успели прочитать восхищения небывалым качеством видео от нейросетки SORA у всех блогеров и новостных изданий? А теперь мы вам расскажем то, о чем не написал никто: чего на самом деле пытается добиться OpenAI с помощью этой модели, как связана генерация видео с самоездящими машинами и AGI, а также при чем здесь культовая «Матрица».

Войти в симуляцию →

Помощь с текстом, перевод видео с японского и корейского, распознавание QR-кодов — что умеет обновлённый Яндекс Браузер

Уровень сложностиПростой
Время на прочтение11 мин
Количество просмотров14K

Сегодня мы выпускаем большое обновление для Браузера с рекордным числом изменений, в основе которых лежат нейросети или другие методы машинного обучения. Теперь Браузер исправит ошибки в тексте, сократит или улучшит его, перескажет видео с японского или корейского, распознает QR-код в трансляции и предложит перейти по ссылке в один клик, а также защитит от фишинг-страниц и не только.

В этой статье расскажем, как мы обучали нейросеть с помощью учебника Розенталя, как модель, отвечающая за субтитры, понимает, что начал говорить другой человек, почему не каждый QR-код легко распознать и за счёт чего мы научились ловить фишинговые сайты, которые появились буквально 5 минут назад. Обо всём этом — под катом.

Читать далее

Два сапога — пара, а три — уже community: как алгоритмы на графах помогают собирать группы товаров

Время на прочтение14 мин
Количество просмотров27K

Привет, Хабр! Меня зовут Иван Антипов, я занимаюсь ML в команде матчинга Ozon. Наша команда разрабатывает алгоритмы поиска одинаковых товаров на сайте. Это позволяет покупателям находить более выгодные предложения, экономя время и деньги.

В этой статье мы обсудим кластеризацию на графах, задачу выделения сообществ, распад карате-клуба, self-supervised и unsupervised задачи — и как всё это связано с матчингом.

Читать далее

Как мы с помощью Midjourney визуализировали понятия из мира ИТ на картах «‎Имаджинариума»

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров13K

Всем привет! Хочу поделиться необычным кейсом из моей практики – созданием иллюстраций для игровых карточек «‎Имиджинариума» с использованием нейросети Midjourney. Наша команда визуализировала выражения и понятия из мира ИТ. Мы представили, как может выглядеть на карточках настольной игры Agile, путь пользователя, удаленный доступ, оживили системы видеонаблюдения, пофантазировали над человеческим обличием бекенда, стартапа или дедлайна. Об этом - новая статья в блоге ЛАНИТ. Бонус –под катом вас ждут очень много красивых картинок и ссылка на составленный мной гайд по работе с промтами в Midjourney. 

Читать далее

Яндексу здесь не место…

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров114K

Здравствуйте, уважаемые читатели!

Тема сегодняшней статьи будет несколько нестандартная, однако, безусловно связанная с информационными технологиями, нейросетями и технологическим гигантом нашего времени – компанией Яндекс.

Сразу хочу отметить – я отлично осознаю факт того, что Хабр не является площадкой для сведения счетов, размещения жалоб или ломания копий. И идея о том, чтобы написать свой отзыв об опыте общения с компанией Яндекс так и осталась бы идеей, лежащей где-то чуть ли не на дальней полочке в моем мозге, если бы буквально на днях, 18.01.2024 г., спустя 5 месяцев после того, как поступили со мной, я не увидел полностью аналогичный случай, о котором написали в сети. См. ссылку ниже:

https://journal.tinkoff.ru/kak-ia-pytalas-ustroitsia-na-rabotu-v-iandeks/

Прочитав пост, я понял, что эпопея “Яндекс-швырялово” длится уже около полугода и при этом все её организаторы чувствуют себя предельно комфортно, поэтому я был просто вынужден расчехлить перо.

Читать далее

«Пора ли гнать на мороз Computer Vision — scientist'ов ?» (Fondation Models и вокруг)

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров19K

Прошлый год в Computer Vision запомнился тем, что появилось множество больших претрейненных сетей (Fondation Models). Самая известная - GPT4v (ChatGPT с обработкой изображений).
В статье я попробую простым языком объяснить что это такое (для тех кто пропустил), как меняет индустрию. Какие задачи стало проще решать. Какие продукты появились в последнее время и появятся в будущем.
И можно ли уже выгнать на мороз лишних "ресерчеров"?!

Читать далее

С новым годом: GPT в 500 строках на SQL

Время на прочтение42 мин
Количество просмотров41K

В минувшем году все только и говорили об ИИ и о том, как он может всё за вас сделать.

Мне нравится, когда кто-то или что-то работает за меня. Поэтому решил: попрошу-ка ChatGPT написать за меня новогодний пост:

«Эй, ChatGPT. А ты можешь реализовать большую языковую модель на SQL?»
«Нет, SQL не подходит для реализации больших языковых моделей. Язык SQL предназначен для выполнения запросов к данным, хранящимся в РСУБД и для управления этими запросами. Для реализации большой языковой модели требуются сложные алгоритмы, обширные датасеты, а зачастую — и фреймворки для глубокого обучения. SQL всеми этими возможностями не обладает.»

Что ж, лишний раз убеждаешься, что, если хочешь что‑то сделать хорошо – сделай это сам.

Давайте же воодушевимся этим оптимистическим планом и реализуем большую языковую модель на языке SQL.

Читать далее

Вклад авторов