Привет! Меня зовут Макс Матюхин, я работаю в SRV-команде Badoo. Мы в Badoo не только активно пишем посты в свой блог, но и внимательно читаем блоги наших коллег из других компаний. Недавно ребята из Dropbox опубликовали шикарный пост о различных способах оптимизации серверных приложений: начиная с железа и заканчивая уровнем приложения. Его автор – Алексей Иванов – дал огромное количество советов и ссылок на дополнительные источники информации. К сожалению, у Dropbox нет блога на Хабре, поэтому я решил перевести этот пост для наших читателей.
Системный аналитик
PyTorch — ваш новый фреймворк глубокого обучения
PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.
Данная статья представляет собой лаконичное введение в PyTorch и предназначена для быстрого ознакомления с библиотекой и формирования понимания её основных особенностей и её местоположения среди остальных библиотек глубокого обучения.
Есть две функции
Есть две булевы функции аргументов, одна — константная, другая — сбалансированная. На какую сам сядешь, на какую фронтендера посадишь? Вот только функции неизвестны, а вызвать их разрешается лишь один раз.
Если не знаешь, как решить подобную задачу, добро пожаловать под кат. Там я расскажу про квантовые алгоритмы и покажу как их эмулировать на самом народном языке — на Python.
Как понять, что происходит на сервере
Александр Крижановский ( krizhanovsky, NatSys Lab.)
По Сети уже давно бегает эта картинка, по крайней мере, я ее часто видел на Фейсбуке, и появилась идея рассказать про нее:
Утилиты командной строки могут быть в 235-раз быстрее вашего Hadoop кластера
Перед публикацией своего цикла статей по MapReduce в Caché, мне показалось важным озвучить данную прошлогоднюю точку зрения из статьи Адама Дрейка «Command-line tools can be 235x faster than your Hadoop cluster». К сожалению оригинальная статья Тома Хайдена, на которую он ссылается стала уже недоступна на сайте Тома, но её, по-прежнему, можно найти в архивах. Для полноты картины предлагаю ознакомиться и с ней тоже.
Введение
Посещая в очередной раз свои любимые сайты, я нашел крутую статью Тома Хайдена об использовании Amazon Elastic Map Reduce (EMR) и mrjob для вычисления статистики отношения выигрыш/проигрыш в наборе данных со статистикой по шахматным матчам, которую он скачал с сайта millionbase archive, и c которой он начал играться используя EMR. Так как объем данных был всего 1.75GB, описывающий 2 миллиона шахматных партий, то я скептически отнесся к использованию Hadoop для данной задачи, хотя были и понятны его намерения просто поиграться и изучить плотнее, на реальном примере, утилиту mrjob и инфраструктуру EMR.
История света и тени в одной маленькой, но гордой игре
Ниже небольшая история реализации освещения в игре подручными средствами.
Встречают, как известно, по одёжке, а когда в команде нет ни то, что арт-директора, а даже просто художника, обычному программисту приходится изворачиваться по-разному.
Big Data от А до Я. Часть 1: Принципы работы с большими данными, парадигма MapReduce
Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.
Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.
Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.
Сортировка целых чисел при нехватке памяти
Введение
В прошлый раз мы обсудили, как можно искусственно ограничить доступную программе память. В качестве бонуса я заполучил себе libmemrestrict – библиотеку с обёртками функций вроде malloc для отслеживания использования памяти, и ptrace-restrict — инструмент на базе ptrace, перехватывающий вызовы brk, sbrk и mmap с той же целью.
Так зачем нам пытаться организовывать ограничение памяти – так ли это часто встречается? Когда в последний раз ООМ прибил ваше приложение? Вы всегда думаете о потреблении памяти во время программирования? Память – штука дешёвая, и если вам не хватает памяти, добавьте ещё пару гигабайт.
И, тем не менее, невозможно бесконечно добавлять память – и не из-за того, что у вас нет бесконечного её источника. При обработке Больших данных просто невозможно вместить весь ввод в массив – необходимо распределять данные между оперативкой, носителями и сетью. Необходимы алгоритмы и техники для такой обработки данных.
И вот я занялся подобными задачами, начав с простой – как отсортировать миллион целых чисел (4 MiB данных) при наличии 2 MiB памяти? Эту задачу можно обобщить на тот случай, когда у вас недостаточно памяти, чтобы вместить все данные.
Дано
Необходимо написать программу сортировки набора целых чисел, хранящихся в файле. Для его создания я написал простейшие утилиты randints и rangeints
Программа должна выдавать отсортированный массив на stdout в виде текста
Она должна измерить время работы и вывести его на stderr. Нельзя просто запустить программу через утилиту time, потому что она посчитает время на чтение файла и время на его вывод.
Она должна работать, имея памяти как минимум в два раза меньше объёма файла. Для этого мы применим libmemrestrict или ptrace-restrict.
Для некоторых методов эти утилиты не пригодятся. Например, для mmap они не сработают – придётся физически ограничить использование памяти.
Они будут проверяться для решения оригинальной задачи (сортировки 4 MiB в 2 MiB). Также я запущу их на виртуалке со 128 MiB памяти для сортировки 500 Mb (125 миллионов четырёхбайтных целых).
Как научиться делать игры: полезные ресурсы
Визуализация статических и динамических сетей на R, часть 3
- визуализация сетей: зачем? каким образом?
- параметры визуализации
- best practices — эстетика и производительность
- форматы данных и подготовка
- описание наборов данных, которые используются в примерах
- начало работы с igraph
Во второй части: цвета и шрифты в графиках R.
В этой части: параметры графов, вершин и ребер.
Компенсация погрешностей при операциях с числами с плавающей запятой
В данной работе примеры приведены на языке програмиирования C.
Дневная астрономия
Луна и Венера при дневном свете. Источник: Astronomy Picture of the Day, автор: David Cortner.
Безопасность Wi-Fi сетей: обнаружение атак
Продолжение серии статей, посвященной вопросам современных угроз, сценариев атак и мерам противодействия. На этот раз мы рассмотрим примеры обнаружения атак на беспроводные сети.
Полезный софт для любителей астрономии
Многие любители астрономии берут с собой «в поля» ноутбуки с приложениями, облегчающими поиск и наблюдение за небесными объектами. Те же самые программы можно использовать и дома, подготовившись заранее и просто распечатав необходимые материалы. Или же проводить наблюдения прямо из окна, с балкона, с прилегающего участка, если это позволяет текущий уровень светового загрязнения и чистота атмосферы. Мы подобрали для вас различные приложения, которые могут быть полезны как начинающим, так и опытным астрономам-любителям. Добро пожаловать под кат.
Вы неправильно пишете животных
Уязвимость рекурсивных алгоритмов навигации муравья: спираль смерти
Не знаю, кто писал большую часть птиц, но я хочу обратить внимание на особенность, позволяющую провести инъекцию произвольного яйца в гнездо. Дело в том, что птица проверяет только расположение и количество яиц, но не их хэши. В 20% случаев кукушка, эксплуатирующая этот баг, может внести яйцо с сохранением контрольной суммы, чего вполне достаточно для повышения прав в гнезде.
Но пойдём далее. Я не знаю, кто разрабатывал архитектуру ящериц, но они бегают в одном процессе, а дышат в другом. При этом платформа не поддерживает многозадачность, поэтому костыль с максимальной длиной бега в 4-6 секунд просто эпичен.
Ритм игрового процесса – зачем нужна база
Самое интересное в игре, как правило, связано с напряжением. С другой стороны, постоянно находиться в напряжении нельзя, поэтому требуется «отпускать» игрока и давать ему расслабиться.
Механика базы работает чертовски просто:
- В игре создаётся некое место, где игроку приятно и безопасно проводить время.
- После периода напряжения игрок отправляется в это место.
- Закончить в этот момент сложно. Кто будет отказываться от приятного «отдыха»? Нет, из игры не выходят перед приятной частью.
- Далее мы стараемся без перехода выводить игрока в следующий цикл, требующий напряжения – так, чтобы игрок не успел понять, как там оказался.
В итоге получается механика, когда игрок просто не может остановиться перед следующим сложным этапом, потому что вместо выбора и рефлексии он уже там.
Сложности сборки Python3 + Qt5 приложений под Windows
Сама программа несложная, написалась относительно быстро. Намного больше времени отъела сборка ее под винду. Понятно, что выбранные инструменты (Python3 + Qt5) не родные, а универстальные, но что потребуется столько времени затратить на сборку, я не предполагал.
Соответственно, хочется поделиться практикой, может кому еще придется стучаться лбом в эту стену.
Под катом выстраданная инструкция как легко собирать PyQt5 приложения в single-file.exe не требующий инсталлятора.
Введение в машинное обучение с помощью scikit-learn (перевод документации)
В этой части мы поговорим о терминах машинного обучения, которые мы используем для работы с scikit-learn, и приведем простой пример обучения.
Машинное обучение: постановка вопроса
В общем, задача машинного обучения сводится к получению набора выборок данных и, в последствии, к попыткам предсказать свойства неизвестных данных. Если каждый набор данных — это не одиночное число, а например, многомерная сущность (multi-dimensional entry или multivariate data), то он должен иметь несколько признаков или фич.
Машинное обчение можно разделить на несколько больших категорий:
- обучение с учителем (или управляемое обучение). Здесь данные представлены вместе с дополнительными признаками, которые мы хотим предсказать. (Нажмите сюда, чтобы перейти к странице Scikit-Learn обучение с учителем). Это может быть любая из следующих задач:
- классификация: выборки данных принадлежат к двум или более классам и мы хотим научиться на уже размеченных данных предсказывать класс неразмеченной выборки. Примером задачи классификации может стать распознавание рукописных чисел, цель которого — присвоить каждому входному набору данных одну из конечного числа дискретных категорий. Другой способ понимания классификации — это понимание ее в качестве дискретной (как противоположность непрерывной) формы управляемого обучения, где у нас есть ограниченное количество категорий, предоставленных для N выборок; и мы пытаемся их пометить правильной категорией или классом.
- регрессионный анализ: если желаемый выходной результат состоит из одного или более непрерывных переменных, тогда мы сталкиваемся с регрессионным анализом. Примером решения такой задачи может служить предсказание длинны лосося как результата функции от его возраста и веса.
- обучение без учителя (или самообучение). В данном случае обучающая выборка состоит из набора входных данных Х без каких-либо соответствующих им значений. Целью подобных задач может быть определение групп схожих элементов внутри данных. Это называется кластеризацией или кластерным анализом. Также задачей может быть установление распределения данных внутри пространства входов, называемое густотой ожидания (density estimation). Или это может быть выделение данных из высоко размерного пространства в двумерное или трехмерное с целью визуализации данных. (Нажмите сюда, чтобы перейти к странице Scikit-Learn обучение без учителя).
Data Science: путь к профессионализму
На волне непрекращающихся дискуссий о Hadoop и прочих больших данных мы не могли пройти мимо замечательной публикации Джерри Овертона, рассказывающей о профессиональном подходе к анализу больших данных в компаниях любого размера. Понятные картинки, предоставленные автором, а также краткий парад технологий, без которых современному Data scientist'у не обойтись. Поэтому пусть статья и начинается с (ошибочной!) посылки: «Не читайте книги по Data Science», она заслуживает публикации в блоге нашего издательства.
Если среди уважаемых читателей найдутся те, кто захочет обсудить Hadoop и прочие технологии из его экосистемы, а также литературу по специфическим алгоритмам, затронутым автором — давайте побеседуем об этом в комментариях.
Информация
- В рейтинге
- Не участвует
- Откуда
- Москва, Москва и Московская обл., Россия
- Дата рождения
- Зарегистрирован
- Активность