Всем привет! Сегодня рассмотрим задачу обнаружения аномалий тонов сердца, используя аудиозаписи звуков сердцебиения. Для этого будем использовать библиотеку librosa по работе с аудиофайлами, а также классические алгоритмы машинного обучения и методы глубокого обучения.
Возьмем датасет “Heartbeat Sound”, который содержит аудиофрагменты сердечных ритмов различной продолжительности от 1 до 30 секунд, как здоровых пациентов, так и имеющих аномальные звуки сердцебиения. Набор содержит 813 аудиофайл с записями, разбитыми по категориям: artefact, extrastole, murmur, normal и unlabel. Попробуем разобраться, что обозначают эти категории.
Normal - как и следует из названия, нормальное сильное ритмичное сердцебиение.
Murmur - записи звука сердца, где присутствуем какой-то шум, например, свист, рев, урчание. Наличие такого шума может быть симптомом многих заболеваний сердца.
Etrastole - экстрасистолические (дополнительные) записи звука, которые могут появляться время от времени и могут быть идентифицированы по отсутствию сердечного тона, включающему дополнительные или пропущенные сердечные сокращения. Экстрасистола может не быть признаком заболевания, но в некоторых ситуациях могут быть вызваны заболеваниями сердца.
Artefact - по сути не является сердцебиением, и характеризуется широким спектром различных звуков.. В этой категории содержится широкий спектр различных звуков, включая визги, эхо, речь, музыку. Обычно различимые тоны сердца отсутствуют, важно определять эту категорию записей, чтобы можно было повторить исследование.