Как стать автором
Обновить
4
0

Пользователь

Отправить сообщение

Загадка потерянного инкремента

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров6.2K

Всё вроде должно быть просто

Сцена этого конкретного преступления может показаться неправдоподобной: аномалия производительности, возникающая в простейшем машинном коде. На самом деле, его даже можно назвать чрезмерно упрощённым, ведь он не выполняет никакой полезной работы. Он нужен лишь для того, чтобы продемонстрировать поведение оборудования в образовательных целях.

Но по моему опыту, чрезвычайно простой машинный код — это, на самом деле, один из самых частых источников чего-то странного. Так как мы передаём CPU ограниченное количество крайне специфичных команд без остальной части когда, то упираемся в границы того, что проектировщики оборудования ожидали встретить в реальном мире. В этой ситуации вы с большей вероятностью сможете пощупать границы микроархитектуры, чем в более стандартном сценарии.

Читать далее

Развенчиваем популярные мифы и заблуждения о компиляторах

Уровень сложностиСредний
Время на прочтение21 мин
Количество просмотров15K

▍ Введение


Компиляторы всегда были окружены аурой загадочности и магии. Из-за этого многие из нас верят, что они делают то, чего они не делают, или что они не делают того, что делают1.

Эта статья станет своего рода продолжением статьи о компиляторных оптимизациях. Я перечислю некоторые заблуждения, с которыми я сталкивался за долгие годы (многие из них были моими), и постараюсь развеять все мифы. Заранее скажу, что эта статья посвящена только крупным популярным компиляторам общего назначения наподобие LLVM, GCC и ICX. Некоторые из сделанных здесь утверждений не относятся, например, к специализированным компиляторам2, а также к мелким и средним компиляторам3.
Читать дальше →

Компиляторные оптимизации сложны, так как компиляторы забывчивы

Уровень сложностиСложный
Время на прочтение10 мин
Количество просмотров6.7K

Как именно вы спроектировали бы оптимизирующий компилятор? Точнее, как именно вы спроектировали и реализовали бы конкретные оптимизации? Попытка решить эту задачу за один присест — дело ошеломительно сложное и, пожалуй, даже невозможное, так как оптимизации компилятора во многом заключаются в следующем...

Читать далее

Как поделить не деля или оптимизация деления компиляторам(и)

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров10K

Если вы никогда не пробовали смотреть как код на C++ разворачивается компилятором в код Assembly – вас ждёт много сюрпризов, причём, не нужно смотреть какой-то замудренный исходный код полный templates или других сложных конструкций: рассмотрите следущий snippet:

Смотреть код

Создание процессора с нуля для чайников

Время на прочтение18 мин
Количество просмотров46K

В жизни многих программистов наступает момент, когда хочется понять как же работает процессор на самом деле, а не в абстрактных схемах высокоуровневых компонентов. У меня возник такой вопрос некоторое время назад, но все материалы которые я находил по этой теме либо были очень специализированными, требующими хорошего понимания электротехники и опыта работы со схемами дискретной логики, либо общие описания, пропускающие многие этапы, и оставляющие лишь смутное представление о том как же всё-таки тысячи транзисторов должны превратиться в работающий процессор.

Для этого я решил написать статью собирающую мой опыт попыток разобраться в этом вопросе, понятным языком, в то же время не пропуская ничего, чтобы после прочтения читатель мог воссоздать процессор из простейших элементов.

В данной статьей мы пройдем путь создания процессора от единичного транзистора до работающего 8-битного процессора, и напишем свой ассемблер для него.

Читать далее

Панорама матричных расширений: от x86 до RISC-V

Время на прочтение15 мин
Количество просмотров9.2K

Матричное расширение ISA CPU… Что это и что оно делает? Уже из названия понятно, что это расширение позволяет ускорять операции над матрицами на CPU. Но задумывались ли вы когда-нибудь, какие они бывают, когда появились, кто и как их создает?

Меня зовут Валерия Пузикова, я эксперт по разработке ПО в компании YADRO, к.ф.-м.н. Около 15 лет разрабатываю численные методы для решения задач линейной алгебры, дополненной и виртуальной реальности, аэрогидродинамики. Вычислительные задачи таких классов всегда приводят к работе с матрицами больших размерностей, поэтому критически важным становится ускорение матричных операций, в том числе с помощью расширений. 

Матричные расширения появились не так давно — чуть более трех лет назад. Несмотря на это, они есть у каждой уважающей себя процессорной архитектуры, в том числе и у относительно молодой открытой RISC-V. Почему их так много и чем они отличаются? Поддерживаются ли разреженные матрицы? Об этом и многом другом вы узнаете из статьи. Приготовьтесь, будет интересно и (спойлер!) без многоэтажных формул. 

Читать далее

Гикпорн 5 или для чего вскрывают микросхемы

Время на прочтение5 мин
Количество просмотров125K
Угадал автора по названию? А вот и нет, в отличии от BarsMonster мы будем вскрывать микросхему не из спортивного интереса и даже не для того, чтобы посмотреть, как она работает. Мы будем искать почему она не работает. Иногда такое случается, особенно если технология изготовления кристаллов находится в стадии разработки и запускаемые проекты могут быть только экспериментальными. И подобная неприятность случилась у нас. В нашем случае полученные образцы оказались неработоспособными (выход годных близок к нулю). Исследование функционирования и электрических параметров указывали на технологические проблемы изготовления кристаллов, которые нам и предстоит обнаружить.
Как мы это делали

Фильтр Блума

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров12K



У каждого разработчика есть набор инструментов для решения различных задач. Однако со временем возникает необходимость расширять этот набор, чтобы эффективно справляться с более сложными задачами. В этой статье я хочу познакомить вас с инструментом, которым вы, скорее всего, раньше не пользовались. И хотя он подходит для решения узкого спектра задач, его использование может оказаться весьма полезным. Знакомьтесь — "фильтр Блума" (Bloom filter).

Читать дальше →

Расшифровка BitLocker — добыча ключа из микросхемы TPM

Время на прочтение4 мин
Количество просмотров23K

Подключение сниффера к модулю TPM по шине LPC

Полнодисковое шифрование BitLocker в ОС Windows считается довольно надёжным способом сохранения данных. По умолчанию оно использует алгоритм Advanced Encryption Standard (AES) в режиме сцепления блоков (CBC) или в режиме подстроенной кодовой книги с кражей шифротекста (XTS) на базе xor-encrypt-xor (XEX) со 128- или 256-битным ключом.

В теории это довольно крепкая схема. Проблема только в том, что секретный ключ BitLocker хранится в Trusted Platform Module (TPM), а в некоторых случаях (на некоторых компьютерах) его можно извлечь, получив физический доступ к устройству.
Читать дальше →

Пишем свой ROM BIOS

Время на прочтение12 мин
Количество просмотров32K

Со стародавних времён хотел попробовать создать собственный ROM BIOS, который будет записан в отдельную микросхему и будет выполнять какие-то полезные действия. Например, ROM BIOS установлен в видеокартах (по крайне мере старых), контроллерах дисков и много где ещё — это фактически расширения обычного BIOS. Понимаю, что это всё старьё и тягаться с возможностями современного UEFI бессмысленно, но мне очень хотелось создать свой собственный образ, который находится физически в отдельной микросхеме и работает при старте системы. Поэтому пришлось даже для этих целей найти старый комп.

Когда я только решил влезть в этот вопрос, столкнулся с тем, что достаточно мало толковой информации, которая была бы хорошо и чётко изложена. Возможно, я плохо искал, примеров того, как писать свою программу в бутсектор жёсткого диска было много, а вот толкового мануала по созданию BIOS Extension — кот наплакал.

В этой статье мы с вами разберём создание своего ROM BIOS, дальше я расскажу про тонкости и нюансы, напишу низкоуровневый «Hello world», сделаю настоящий интерпретатор BASIC ROM, который стартует при включении компьютера, как в первых IBM PC.
Читать дальше →

Разработка BIOS на языках высокого уровня

Уровень сложностиСложный
Время на прочтение11 мин
Количество просмотров27K
Ничего лишнего: материнская плата, видеокарта и ROM-BIOS

Меня давно волнует вопрос, как подступиться к разработке на голом железе, на чистом си. Хотелось понять, каким же образом идёт запуск BIOS, u-boot, grub и прочих первичных загрузчиков. Ведь необходимо перейти от ассемблера к тёплому ламповому си и соблюсти условие, собрать всё это в линукс любимым компилятором gcc.

Хотя я и имею достаточный опыт BareMetal-разработки, тем не менее, всё это были чужие проекты со своим кодом. А мне хотелось понять, как начать свой проект с чистого листа, когда есть только чистая железка и идея. Толковых статей как подступится к этой задаче достаточно мало, при этом совершенно непонятно, с какого же края к ней подходить.

Здесь я хочу свести основные моменты разработки BIOS в одном месте и разобраться обо всех проблемах, которые я получил во время своих опытах в разработке (первая и вторая части).
Читать дальше →

Position-independent code (PIC) в разделяемых библиотеках

Время на прочтение16 мин
Количество просмотров24K

enter image description here


Привет. Меня зовут Марко, и я системный программист в Badoo. Я очень люблю досконально разбираться в том, как работают те или иные вещи, и тонкости работы разделяемых библиотек в Linux не исключение. Я представляю вам перевод именно такого разбора. Приятного чтения.

Читать дальше →

Разработка цифровой аппаратуры нетрадиционным методом: Yosys, SpinalHDL, VexRiscv (ч.1)

Уровень сложностиСложный
Время на прочтение127 мин
Количество просмотров14K

Основная прелесть использования ПЛИС, на мой взгляд, состоит в том, что разработка аппаратуры превращается в программирование со всеми его свойствами: написание и отладка кода как текста на специализированных языках описания аппаратуры (HDL); код распространяется в виде параметризованных модулей (IP-блоков), что позволяет его легко переиспользовать в других проектах; распределенная разработка обширным коллективом разработчиков с системой контроля версий, такой же, как у программистов (Git); и, как и в программировании, ничтожно низкая стоимость ошибки.

Последнее очень важно, так как если при разработке устройства классическим методом разработчик несет вполне существенные затраты на сборку и производство изделия, и любая схемотехническая ошибка или ошибка трассировки печатной платы — это всегда выход на очередную итерацию и попадание на деньги, то при работе с ПЛИС ошибки ничтожны по своей стоимости и легко устранимы. И даже если в серийном изделии обнаруживается ошибка, то её во многих случаях можно устранить очередным апгрейдом прошивки «в поле» без замены изделия. Короче, с приходом ПЛИС разработка цифровой аппаратуры все больше и больше выглядит как программирование, а это, помимо всего прочего, существенно понижает порог вхождения в тему, и все больше программистов становятся разработчиками «железа». А новые люди, в свою очередь, приносят с собой в индустрию новые подходы и принципы.

В этой статье я хочу поделиться своим небольшим опытом «программирования» микросхем ПЛИС и тем, как я постепенно погружался в тему ПЛИСоводства. Изначально я собирался написать небольшую заметку про открытый тулчейн для синтеза Yosys. Потом — про язык SpinalHDL и синтезируемое микропроцессорное ядро VexRiscv, на нём написанное. Потом — про замену микроконтроллеров микросхемами ПЛИС на примере моей отладочной платы «Карно». Но в процессе я погрузился в историю появления Hardware Description Languages (HDL), и когда я начал писать, Остапа, как это часто бывает, понесло... В общем, получилось то, что получилось.

А еще эту статью можно рассматривать как глубокое погружение в то, что происходит вот на этом новогоднем видео.

Погрузиться сполна

Ассемблер: прячем несколько команд в команде

Время на прочтение3 мин
Количество просмотров8.2K
image
Речь пойдёт о том, как можно спрятать «лишние» ассемблерные команды в обычном коде. Данный метод полезен для усложнения дизассемблирования кода, особенно, если генерацию «скрытых» команд автоматизировать.
Инструментарий: отладчик OllyDbg.

Странный странный код


Взглянем на следующий код, в котором скрыто намного больше команд, чем видно на первый згляд:
MOV EAX,1EBC031
MOV EBX,90DB3190
CMP EAX,EBX
JNE SHORT 0000009E
NOP
Читать дальше →

Об одной недокументированной особенности умножения и деления на процессорах x86

Время на прочтение4 мин
Количество просмотров9.4K

Начиная с процессора 80286 компания Intel поддерживала полную совместимость «снизу-вверх» в системе команд. То есть если какая-то из команд процессора дает такой-то результат на 8086, то и на более поздних процессорах результат будет точно таким же (сейчас не будем рассматривать ошибки типа неправильного деления в Pentium I).

Но так ли это? Что за вопрос! Ведь если бы совместимость не сохранялась, то старые программы не могли бы выполняться, а ведь до сих пор на любом компьютере можно поностальгировать запустив Norton Commander или Tetris. Однако не все так просто… Начиная с 8080 в процессорах Intel есть регистр флагов, состояние которого определяется результатом последней команды вычисления данных. Все флаги в нем давно описаны и поведение их строго зафиксировано. Кроме двух исключений.

Читать далее

Сколько инструкций в x86?

Время на прочтение1 мин
Количество просмотров24K
vvvphoenix упомянул в своей позавчерашней статье: «Кстати, я пытался найти график роста числа X86 инструкций по годам (или по поколениям). Пока не смог (может, есть у кого?)»

Я решил, что мне это тоже интересно — да настолько, что не жалко потратить выходной день на сведение en.wikipedia.org/wiki/X86_instruction_listings в одну табличку:



Считались различные мнемоники; например, десятки вариантов MOV считались за одну инструкцию.

Таким образом, можно грубо считать, что количество мнемоник в x86 удваивается каждые 13 лет.

Обнаружены незадокументированные опкоды в системе инструкций процессора x86

Время на прочтение15 мин
Количество просмотров10K

Венгерский инженер Кан Бёлюк (Can Bölük) из Verilave нашёл неиспользованные и не задокументированные операционные коды в системе инструкций процессора x86-64.

Проблема обнаружения неиспользованных операционных кодов в том, что при тестировании бывает сложно обнаружить взаимосвязи. Кан Беллюк вывел метод обнаружения практически любой инструкции процессора, используя сторонний канал. Способ интересен тем, что он обращается к нетривиальным возможностям процессора.

Делимся интересным материалом.

Читать далее

Вычисления без инструкций на x86

Время на прочтение10 мин
Количество просмотров11K

В этой статье обсуждается необычное применение особенностей защищённого режима процессоров архитектуры x86 — для произведения вычислений без исполнения инструкций, то есть за счёт внутренних механизмов процессора: аппаратного переключения задач, хитроумного управления памятью и логики вызова обработчика прерываний. Как известно, любая сколько-нибудь сложная система обладает полнотой по Тьюрингу, поэтому мало удивительного в том, чтобы найти её в неожиданных местах естественно эволюционировавшей x86. Приглашаю под кат интересующихся подобными низкоуровневыми извращениями.

Читать дальше

Сколько инструкций процессора использует компилятор?

Время на прочтение3 мин
Количество просмотров35K
Месяц назад я попытался сосчитать, сколько разных инструкций поддерживается современными процессорами, и насчитал 945 в Ice Lake. Комментаторы затронули интересный вопрос: какая часть всего этого разнообразия реально используется компиляторами? Например, некто Pepijn de Vos в 2016 подсчитал, сколько разных инструкций задействовано в бинарниках у него в /usr/bin, и насчитал 411 — т.е. примерно треть всех инструкций x86_64, существовавших на тот момент, не использовались ни в одной из стандартных программ в его ОС. Другая любопытная его находка — что код для x86_64 на треть состоит из инструкций mov. (В общем-то известно, что одних инструкций mov достаточно, чтобы написать любую программу.)

Я решил развить исследование de Vos, взяв в качестве «эталонного кода» компилятор LLVM/Clang. У него сразу несколько преимуществ перед содержимым /usr/bin неназванной версии неназванной ОС:

  1. С ним удобно работать: это один огромный бинарник, по размеру сопоставимый со всем содержимым /usr/bin среднестатистического линукса;
  2. Он позволяет сравнить разные ISA: на releases.llvm.org/download.html доступны официальные бинарники для x86, ARM, SPARC, MIPS и PowerPC;
  3. Он позволяет отследить исторические тренды: официальные бинарники доступны для всех релизов начиная с 2003;
  4. Наконец, в исследовании компиляторов логично использовать компилятор и в качестве подопытного объекта :-)

Начну со статистики по мартовскому релизу LLVM 10.0:
ISA Размер бинарника Размер секции .text Общее число инструкций Число разных инструкций
AArch64   97 МБ 74 МБ 13,814,975 195
ARMv7A 101 МБ 80 МБ 15,621,010 308
i386 106 МБ 88 МБ 20,138,657 122
PowerPC64LE 108 МБ 89 МБ 17,208,502 288
SPARCv9 129 МБ 105 МБ 19,993,362 122
x86_64 107 МБ 87 МБ 15,281,299 203
В прошлом топике комментаторы упомянули, что самый компактный код у них получается для SPARC. Здесь же видим, что бинарник для AArch64 оказывается на треть меньше что по размеру, что по общему числу инструкций.

А вот распределение по числу инструкций:
Читать дальше →

Бэкдоры в микрокоде ассемблерных инструкций процессоров x86

Время на прочтение6 мин
Количество просмотров69K

Софту мы не доверяем уже давно, и поэтому осуществляем его аудит, проводим обратную инженерию, прогоняем в пошаговом режиме, запускаем в песочнице. Что же насчёт процессора, на котором выполняется наш софт? – Мы слепо и беззаветно доверяем этому маленькому кусочку кремния. Однако современное железо имеет те же самые проблемы, что и софт: секретную недокументированную функциональность, ошибки, уязвимости, малварь, трояны, руткиты, бэкдоры.



ISA (Instruction Set Architecture) x86 – одна из самых долгих непрерывно изменяющихся «архитектур набора команд» в истории. Начиная с дизайна 8086, разработанного в 1976 году, ISA претерпевает постоянные изменения и обновления; сохраняя при этом обратную совместимость и поддержку исходной спецификации. За 40 лет своего взросления, архитектура ISA обросла и продолжает обрастать множеством новых режимов и наборов инструкций, каждый из которых добавляет к предшествующему дизайну, и без того перегруженному, новый слой. Из-за политики полной обратной совместимости, в современных процессорах x86 присутствуют даже те инструкции и режимы, которые на сегодняшний день уже преданы полному забвению. В результате мы имеем архитектуру процессора, которая представляет собой сложно переплетающийся лабиринт новых и антикварных технологий. Такая чрезвычайно сложная среда – порождает множество проблем с кибербезопасностью процессора. Поэтому процессоры x86 не могут претендовать на роль доверенного корня критической киберинфраструктуры.

Читать дальше →

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность