Представим, что ваше желание уволиться можно описать одним числом. Что будет влиять на него? Понятно, соответствие зарплаты ожиданиям. Потом — ваш комфорт в коллективе, адекватность руководителя. Расстояние до офиса, если вы ездите в офис, или до ЦОДа, если вы ездите в ЦОД, возраст, срок последнего повышения и так далее.
В этой модели всегда было слабое место — сложно посчитать совокупность влияния людей на вас. В целом-то всё просто: если вы работаете с теми, кто вам неприятен, то в зависимости от частоты взаимодействий желание уволиться растёт.
Следующий фактор: когда на новое место работы уходит кто-то, с кем вы сработались, ваш шанс на увольнение также резко растёт. Потому что он позовёт к себе — или потому что у вас уменьшится число людей, с кем вам было комфортно.
Мы не можем сказать, кто и с кем сработался. Таких источников данных у нас просто нет. Но мы сделали допущение о том, что если сотрудники плотно друг с другом взаимодействуют, то уход одного сотрудника увеличит вероятность ухода другого. И дальше на основании этого допущения составили граф всех сотрудников, в котором учли плотность взаимодействия между ними.
И знаете что? Наша модель начала предсказывать увольнения за 3 месяца с точностью около 70%. В смысле, из тех, кого модель разметила на месяц вперёд подтвердилось 73% случаев (точность), при этом модель находит 40% от всех увольнений (полнота).
Теперь мы можем с этим что-то делать.
Естественно, у этой модели огромное количество ограничений. Сейчас мы с
DVAMM про всё это расскажем.