
Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете с PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit
, predict
, score
— через sklearn.
В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.
Мы подготовили гайд, как работать со scikit-learn в 2025 году. Новичкам он поможет собрать первую ML-задачу — с данными, моделью и метриками. А тем, кто уже использует библиотеку, — освежить знания и понять, что изменилось в новых версиях.