
Как построить диаграмму Венна с 50 кругами? Визуализация множеств и история моего Python-проекта с открытым кодом

Кластеризация — это такая магическая штука: она превращает большой объём неструктурированных данных в потенциально обозримый набор кластеров, анализ которых позволяет делать выводы о содержании этих данных.
Приложений у методов кластеризации огромное количество. Например, мы кластеризуем поисковые запросы для того, чтобы повышать обобщающую способность алгоритмов ранжирования: любая статистика, вычисленная по группе похожих запросов, надёжнее той же статистики, вычисленной для одного отдельного запроса. Кластеризация позволяет повышать качество на запросах с редко встречающимися формулировками. Другой понятный пример — Яндекс.Новости, которые автоматически формируют сюжеты из новостных сообщений.
В далёком 2013 году мне повезло поучаствовать в разработке очень сложного алгоритма кластеризации. Требовалось с очень высоким качеством кластеризовать сотни тысяч объектов и делать это быстро: за десятки секунд на одной машине. Первым делом нужно было построить систему оценки качества, и в этой статье я расскажу именно о ней.
Споры о том, нужно ли разработчикам писать алгоритмический код на собеседованиях, бесконечны. В поддержку положительного ответа я уже публиковал рассказ об алгоритмических секциях с написанием кода в Яндексе и примерами задач, которые там можно встретить. Теперь я хочу развить эту тему и показать примеры реального продакшен-кода.
Все примеры когда-то написали конкретные разработчики в процессе решения достаточно рутинных задач. Я никак не улучшал код перед публикацией, лишь местами адаптировал его так, чтобы он был понятен без знакомства с нашей кодовой базой. Поэтому некоторые примеры кода могут показаться вам недостаточно классными, но в условиях постоянного давления сроков невозможно шлифовать абсолютно весь код.
В статье четыре примера. Два на C++, один на TypeScript и один на Python. Способность быстро писать относительно простые алгоритмы без багов — общая необходимость, она не зависит от специализации разработчика.
Мы рады представить хабросообществу наш смелый эксперимент: калькулятор, работающий на основе нейросети. Он работает следующим образом: математическое выражение преобразуется в изображение и подается на вход сверточной нейросети, которая генерирует изображение-результат. Полученный калькулятор генерирует изображения правильных ответов, не вычисляя заданное выражение в явном виде.
Работа уже опубликована на arXiv и сегодня будет представлена на конференции SIGBOVIK в формате аудиозаписи. В этом посте мы поделимся с вами результатами нашего эксперимента. Мотивация и детали реализации также под катом.