За годы работы я подробно изучил, как центральные процессоры (CPU) выполняют код и как они устроены внутри. Дело в том, что я участвовал в разработке ядра Linux и ScyllaDB, а этот код очень близок к металлу. Я даже немного баловался с Verilog, безрезультатно попытавшись собрать моё собственное ядро RISC-V.
Графические процессоры (GPU) в отличие от обычных в основном оставались для меня чёрным ящиком, несмотря на то, что поработать с ними всё-таки довелось. Помню, что экспериментировал с NVIDIA RIVA 128 или чем-то подобным, проверяя, как там работает DirectX. Тогда такие процессоры ещё не выделялись на фоне ускорителей 3D-графики. Я также пытался идти в ногу со временем и немного упражнялся в программировании элементарных шейдеров на современных GPU. Но я никогда глубоко не вдавался в работу с GPU, и мои взгляды можно назвать CPU-центричными.
Однако, поскольку сегодня наблюдается всплеск рабочих нагрузок, связанных с ИИ, и, в частности, приходится работать с большими языковыми моделями (БЯМ), графические процессоры становятся незаменимыми для современных вычислений. К задачам, решаемым с применением ИИ, относятся масштабные прикладные тензорные операции, в том числе — сложение и перемножение матриц. А это уже работа для GPU. Но как современный GPU выполняет их, и насколько при этом возрастает эффективность по сравнению с выполнением таких же рабочих нагрузок на CPU?