Все потоки
Поиск
Написать публикацию
Обновить
8.8

TensorFlow *

открытая библиотека для машинного обучения

Сначала показывать
Порог рейтинга
Уровень сложности

Как я научился не волноваться и полюбил машинное зрение

Время на прочтение5 мин
Количество просмотров5K
Привет, Хабр! Меня зовут Нагуманов Артем, за своими плечами я имею более чем 15 летний опыт разработки программного обеспечения, управления проектами, командами, IT отделами. Меня всегда интересовала тема искусственного интеллекта и машинного зрения. Разрабатывая программное обеспечение, меня всегда посещала мысль, почему бы не добавить в enterprise приложение хоть какую-то частичку интеллекта, чтобы частично или полностью отказаться от участия пользователя в каком-либо процессе, который на первый взгляд кажется абсолютно не формализуемым.

image
Читать дальше →

Настройка окружения нейронной сети Mask R-CNN

Время на прочтение2 мин
Количество просмотров1.4K
Доброго времени суток, в рамках изучения нейронных сетей, многие сталкиваются с трудностями по настройки окружения. С этой целью решил написать статью, дабы помочь жаждущим новичкам.

В рамках своей задачи воспользовался архитектурой Mask R-CNN.

Ссылки на все дистрибутивы будут предложены в конце поста.
Читать дальше →

Создание приложений с помощью Mediapipe

Время на прочтение22 мин
Количество просмотров17K

Сегодня множество сервисов используют в своей работе нейросетевые модели. При этом из-за невысокой производительности клиентских устройств вычисления в большинстве случаев производятся на сервере. Однако производительность смартфонов с каждым годом растет и сейчас становится возможным запуск небольших моделей на клиентских устройствах. Возникает вопрос: как это сделать? Помимо запуска модели требуется выполнять предобработку и постобработку данных. К тому же, есть как минимум две платформы, где это нужно реализовать: android и iOS. Mediapipe — фреймворк для запуска пайплайнов (предобработка данных, запуск (inference) модели, а также постобработка результатов модели) машинного обучения, позволяющий решить описанные выше проблемы и упростить написание кроссплатформенного кода для запуска моделей.


Читать дальше →

Интерактивные эксперименты с машинным обучением (на TensorFlow)

Время на прочтение6 мин
Количество просмотров6.8K

Вкратце


Я создал новый проект Интерактивные эксперименты с машинным обучением на GitHub. Каждый эксперимент состоит из Jupyter/Colab ноутбука, показывающего как модель тренировалась, и Демо странички, показывающей модель в действии прямо в вашем браузере.


Несмотря на то, что машинные модели в репозитории могут быть немного "туповатенькими" (помните, это всего-лишь эксперименты, а не вылизанный код, готовый к "заливке на продакшн" и дальнейшему управлению новыми Tesla), они будут стараться как могут чтобы:


  • Распознать цифры и прочие эскизы, которые вы нарисуете в браузере
  • Определить и распознать объекты на видео из вашей камеры
  • Классифицировать изображения, загруженные вами
  • Написать с вами поэму в стиле Шекспира
  • И даже поиграть с вами в камень-ножницы-бумагу
  • и пр.

Я тренировал модели на Python с использованием TensorFlow 2 с поддержкой Keras. Для демо-приложения я использовал React и JavaScript версию Tensorflow.


Интерактивные эксперименты с машинным обучением

Читать дальше →

Подборка статей о машинном обучении: кейсы, гайды и исследования за апрель 2020

Время на прочтение3 мин
Количество просмотров3.5K


Продолжаем отбирать публикации, которые помогают снизить порог входа в сферу ML. Как и прежде, здесь в первую очередь собраны инструменты с открытым исходным кодом, предобученные модели и высокоуровневые API.
Читать дальше →

Детекция кашля на Intel NUC

Время на прочтение3 мин
Количество просмотров2.6K
Собственно, да, на простом языке – мы захотели (и реализовали) детектор кашляющих людей, но не по позе (так как это требует больших ресурсов), а путем классификации входящих фото после детекции лица с расширением зоны.

Детектор кашля для Intel NUC
Читать дальше →

Руками не трогать! Управляем веб-страницей с помощью веб-камеры

Время на прочтение4 мин
Количество просмотров11K


Рано или поздно карантин закончится, и жители городов смогут снова покидать дома. Но уже сейчас становится ясно, что месяцы самоизоляции не пройдут бесследно. Наши привычки из жизни до карантина изменятся, и окружающему миру придется под это подстраиваться.


Экономический кризис станет двигателем быстрой адаптации изменений: компании, которые первыми поймут, как дать пользователям дополнительную ценность или удобство, окажутся в топах. Перед IT-индустрией будет масса челленджей. И в этом материале мы поделимся своим решением одной из проблем нового мира. Но обо всем по порядку.

Читать дальше →

Автоматический детектор COVID-19 по снимкам флюорографии

Время на прочтение15 мин
Количество просмотров2.6K


Из этого руководства вы узнаете, как автоматически обнаружить COVID-19 в специально подобранном наборе данных с помощью Keras, TensorFlow и глубокого обучения.

Как и большинство людей в мире прямо сейчас, меня искренне беспокоит COVID-19. Я замечаю, что начал постоянно анализировать своё личное здоровье и подозревать, что я уже заразился.

Чем больше я об этом беспокоюсь, тем больше проявляется болезненное сочетание реальных симптомов с ипохондрией:

  • Проснулся утром, чувствую себя немного разбитым.
  • Когда выбрался из постели, то у меня уже потекло из носа (хотя теперь известно, что насморк не является симптомом COVID-19).
  • Пока добрался до ванной, чтобы взять салфетку, ещё и кашлянул.
Читать дальше →

Классификация изображений на Android с помощью TensorFlow Lite и сервиса Azure Custom Vision

Время на прочтение6 мин
Количество просмотров5.1K
Классификация изображений позволяет нашим приложениям Xamarin распознавать объекты на фотографиях.

Все более и более распространенной становится возможность сделать фотографию и распознать ее содержимое. Мы можем наблюдать это в наших банковских приложениях при внесении мобильного депозита, в приложениях для фото при добавлении фильтров и в приложениях HotDog, чтобы определить, является ли наша еда хот-догом.

Благодаря сервису Azure Custom Vision нам не нужно изучать сложные алгоритмы машинного обучения для реализации классификации изображений.

В этой статье мы рассмотрим, как реализовать классификацию изображений с помощью сервиса Azure Custom Vision, TensorFlow Lite (платформа машинного обучения с открытым исходным кодом) и Xamarin.Android.

Читать дальше →

Прогнозирование временных рядов с помощью рекуррентных нейронных сетей

Время на прочтение16 мин
Количество просмотров106K
Удалённый режим работы на фоне всеобщей самоизоляции может привести к весьма дурным последствиям. И эмоциональное выгорание – это ещё куда ни шло: там ведь и до крыши недалеко. В этой связи, как и многие, попробовал «успокоить» себя выделением времени на другие занятия – и начал переводить наиболее интересные статьи с английского языка на русский: «Даёшь машинлёрнинг в массы!».) Нужно воздать должное: здорово отвлекает. Если у вас есть предложения как по смысловому наполнению, так и по переводу данного текста для русскоязычного читателя, присоединяйтесь к обсуждению.

image
Читать дальше →

Подборка статей о машинном обучении: кейсы, гайды и исследования за март 2020

Время на прочтение3 мин
Количество просмотров5K


Кажется, что ни один пост сейчас не обходится без упоминаний коронавируса, и эта подборка не станет исключением.
Читать дальше →

«Вы уж простите, обознался...» или распознаем малину и контроллеры с помощью Tensorflow Object Detection API

Время на прочтение7 мин
Количество просмотров7.2K
В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.

В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.

Хотите к лету улучшить навык распознавания ягод? Тогда милости прошу под кат.


Читать дальше →

Подборка статей о машинном обучении: кейсы, гайды и исследования за февраль 2020

Время на прочтение6 мин
Количество просмотров5.6K


Вслед за январским постом встречайте второй выпуск дайджеста. Здесь вас ждёт список англоязычных материалов за февраль, которые написаны без лишнего академизма. Публикации содержат примеры кода и ссылки на непустые репозитории. Упомянутые технологии лежат в открытом доступе и многие из них не требуют сверхмощного железа для тестирования.
Читать дальше →

Ближайшие события

Молчание вентиляторов. Google Colab, Javascript и TensorflowJS

Время на прочтение4 мин
Количество просмотров36K

Google Colab — это бесплатный облачный сервис на основе Jupyter Notebook. Google Colab предоставляет всё необходимое для машинного обучения прямо в браузере, даёт бесплатный доступ к невероятно быстрым GPU и TPU. Заранее предупрежу, что у него есть некоторые ограничения, поэтому вы не сможете использовать его для production.


С помощью Google Colab вы можете легко обучить свою модель за считанные секунды. Он поддерживает Python (2/3) из коробки, так что всё должно быть хорошо, верно?


Читать дальше →

Распознавание объектов на android с помощью TensorFlow: от подготовки данных до запуска на устройстве

Время на прочтение10 мин
Количество просмотров24K

Обучение нейросети распознаванию образов — долгий и ресурсоемкий процесс. Особенно когда под рукой есть только недорогой ноут, а не компьютер с мощной видеокартой. В этом случае на помощь придёт Google Colaboratory, которая предлагает совершенно бесплатно воспользоваться GPU уровня Tesla K80 (подробнее).


В этой статье описан процесс подготовки данных, обучения модели tensorflow в Google Colaboratory и её запуск на android устройстве.


Подготовка данных


В качестве примера попробуем обучить нейросеть распознавать белые игральные кости на черном фоне. Соответственно, для начала, надо создать набор данных, достаточный для обучения (пока остановимся на ~100 фото).


Рекуррентные нейронные сети (RNN) с Keras

Время на прочтение11 мин
Количество просмотров95K
Перевод руководства по рекуррентным нейросетям с сайта Tensorflow.org. В материале рассматриваются как встроенные возможности Keras/Tensorflow 2.0 по быстрому построению сеток, так и возможности кастомизации слоев и ячеек. Также рассматриваются случаи и ограничения использования ядра CuDNN позволяющего ускорить процесс обучения нейросети.


Читать дальше →

Как энергетик изучал нейросети и обзор бесплатного курса «Udacity: Intro to TensorFlow for Deep Learning»

Время на прочтение5 мин
Количество просмотров11K
Всю свою сознательную жизнь, я был энергетиком (нет, сейчас речь не идет о напитке с сомнительными свойствами).

Я никогда особо не интересовался миром информационных технологий, да и даже матрицы я вряд ли на листочке смогу перемножить. Да и не нужно мне это было никогда, чтобы вы понимали немного о специфике моей работы, могу поделиться замечательной историей. Попросил я как-то моих коллег сделать работу в Excel – таблице, прошла половина рабочего дня, подхожу к ним, а они сидят и суммируют данные на калькуляторе, да- да, на обычном таком черном калькуляторе с кнопками. Ну и о каких нейронных сетях может идти речь после этого?.. Поэтому никаких особых предпосылок к погружению в мир IT у меня никогда не было. Но, как говорится «хорошо там, где нас нет», мои друзья прожужжали мне все уши о дополненной реальности, о нейронных сетях, о языках программирования (в основном про Python).

На словах оно выглядело весьма просто, и я решил почему бы не освоить это магическое искусство, чтобы применить в своей сфере деятельности.

В этой статье я опущу мои попытки освоить азы Python и поделюсь с вами своим впечатлением от бесплатного курса по TensorFlow от Udacity.


Читать дальше →

Подборка статей о машинном обучении: кейсы, гайды и исследования за январь 2020

Время на прочтение5 мин
Количество просмотров9.9K
Исследовательская работа в области машинного обучения постепенно покидает пределы университетских лабораторий и из научной дисциплины становится прикладной. Тем не менее, все еще сложно находить актуальные статьи, которые написаны на понятном языке и без миллиарда сносок.

Этот пост содержит список англоязычных материалов за январь, которые написаны без лишнего академизма. В них вы найдете примеры кода и ссылки на непустые репозитории. Упомянутые технологии лежат в открытом доступе и не требуют сверхмощного железа для тестирования.
Читать дальше →

Обучение и оценка модели с Keras

Время на прочтение25 мин
Количество просмотров116K


Это руководство охватывает обучение, оценку и прогнозирование (выводы) моделей в TensorFlow 2.0 в двух общих ситуациях:

  • При использовании встроенных API для обучения и валидации (таких как model.fit(), model.evaluate(), model.predict()). Этому посвящен раздел «Использование встроенных циклов обучения и оценки»
  • При написании кастомных циклов с нуля с использованием eager execution и объекта GradientTape. Эти вопросы рассматриваются в разделе «Написание собственных циклов обучения и оценки с нуля».

В целом, независимо от того, используете ли вы встроенные циклы или пишете свои собственные, обучение и оценка моделей работает строго одинаково для всех видов моделей Keras: Sequential моделей, созданных с помощью Functional API, и написанных с нуля с использованием субклассирования.
Читать дальше →

Тензоры в TensorFlow

Время на прочтение6 мин
Количество просмотров34K

image


Основным объектом которым манипулируют в Tensorflow, является тензор. О том, что такое тензор, какие бывают тензоры, какие у них есть свойства и как ими манипулировать читайте в переводном руководстве с сайта tensorflow.org.

Читать дальше →