Выбор платформы для работы с Computer Vision on the Edge - непростая задача. На рынке десятки плат. И одна другой краше. Но на практике все оказывается не так хорошо.
Я попробовал сравнить дешевые платы которые есть на рынке. И сделал это не только в по скорости. Я попробовал сравнить платформы по “удобству” их использования. Насколько просто будет портировать сети, насколько хорошая поддержка. И насколько просто работать. И актуализировал это для 2022 года (один и тот же Coral из 2020 и из 2022 - две разные платы).
Пользователь
Сравнение алгоритмов детекции лиц
Привет, Хабр! Очень часто я на просторах интернета натыкаюсь на такой вопрос: «А какое готовое решение по детекции лиц лучше всего использовать?» Так вот, я отобрал 5 решений с Github, которые показались мне хорошими, относительно новыми и лёгкими в использовании, и хотел бы сравнить их между собой. Всем, кому интересно, что из этого вышло, добро пожаловать под кат!
Знакомство с GStreamer: Источники данных
Предыдущая статья: Знакомство с GStreamer: Введение.
Вступление
Источники данных — это класс плагинов GStreamer который позволяет читать медиаданные из различных источников, таких как файловая система или аудио-входы звуковой карты. Также, они позволяют получать медиапоток с различных серверов потокового вещания, такие как HTTP (ICECast, ShoutCast), RTSP, RTMP, TCP и UDP. А еще имеется возможность читать данные с DVB карт, CDDA-дисков (народе известных просто как «компакт-диски»), и еще много всего, при помощи различных плагинов, которых на данный момент около 30.
Примечание: как говорилось в прошлой статье, источники данных имеют только один pad с названием src, так как его можно подключить к другому элементу, но к нему подключить ничего нельзя.
В этой статье мы разберем некоторые (пожалуй, наиболее востребованные) источники данных, напишем немного кода на Python и узнаем много нового.
Ультимативное сравнение embedded платформ для AI
Замечательные фреймворки. Что PyTorch, что второй TensorFlow. Всё становиться удобнее и удобнее, проще и проще…
Но есть одна тёмная сторона. Про неё стараются молчать. Там нет ничего радостного, только тьма и отчаяние. Каждый раз когда видишь позитивную статью — грустно вздыхаешь, так как понимаешь что просто человек что-то не понял. Или скрыл.
Давайте поговорим про продакшн на embedded-устройствах.
Hello, TensorFlow. Библиотека машинного обучения от Google
Проект TensorFlow масштабнее, чем вам может показаться. Тот факт, что это библиотека для глубинного обучения, и его связь с Гуглом помогли проекту TensorFlow привлечь много внимания. Но если забыть про ажиотаж, некоторые его уникальные детали заслуживают более глубокого изучения:
- Основная библиотека подходит для широкого семейства техник машинного обучения, а не только для глубинного обучения.
- Линейная алгебра и другие внутренности хорошо видны снаружи.
- В дополнение к основной функциональности машинного обучения, TensorFlow также включает собственную систему логирования, собственный интерактивный визуализатор логов и даже мощную архитектуру по доставке данных.
- Модель исполнения TensorFlow отличается от scikit-learn языка Python и от большинства инструментов в R.
Все это круто, но TensorFlow может быть довольно сложным в понимании, особенно для того, кто только знакомится с машинным обучением.
Как работает TensorFlow? Давайте попробуем разобраться, посмотреть и понять, как работает каждая часть. Мы изучим граф движения данных, который определяет вычисления, через которые предстоит пройти вашим данным, поймем, как тренировать модели градиентным спуском с помощью TensorFlow, и как TensorBoard визуализирует работу с TensorFlow. Наши примеры не помогут решать настоящие проблемы машинного обучения промышленного уровня, но они помогут понять компоненты, которые лежат в основе всего, что создано на TensorFlow, в том числе того, что вы напишите в будущем!
MLflow в облаке. Простой и быстрый способ вывести ML-модели в продакшен
Robot factory by lucart
MLflow — один из самых стабильных и легких инструментов, позволяющий специалистам по Data Science управлять жизненным циклом моделей машинного обучения. Это удобный инструмент с простым интерфейсом для просмотра экспериментов и мощными средствами упаковки управления, развертывания моделей. Он позволяет работать практически с любой библиотекой машинного обучения.
Я Александр Волынский, архитектор облачной платформы Mail.ru Cloud Solutions. В прошлой статье мы рассмотрели Kubeflow. MLflow — это еще один инструмент для построения MLOps, для работы с которым не обязателен Kubernetes.
MLOps. Зачем он нужен и как с ним работать? Обзор полезных инструментов
Когда впервые сталкиваешься с понятием MLOps, нет абсолютно никакого понимания, а зачем это вообще нужно. В разного рода выступлениях, посвященных этой теме, рассказывают о важности воспроизводимости результатов, хранения зависимостей проекта, а зачем это нужно — обычно никто не объясняет. Все эти вещи становятся очевидными только после того, как пройдешь через весь ад создания и поддержания действительно крупного проекта.
В первой части этой статьи я расскажу о проблемах, с которыми можно столкнуться при работе над проектами, а во второй — об инструментах, которые помогут с ними справиться. Это будет интересно в первую очередь начинающим специалистам в области ML, которые еще не столкнулись с подобными проблемами в своей практике. Я не буду рассказывать об инструментах, которые и так пользуются популярностью в DevOps, а затрону специфичные для области вещи.
Детекция аномалий на снимках с БПЛА
Осенью мы с друзьями участвовали в хакатоне DIGITAL SUPERHERO от организаторов хакатона ИТС и СЦ, о котором я писал в статье. Хакатон проходил с 18 по 23 сентября 2020 года. Мы выбрали задачу Распознавание аномалий (объектов и инцидентов) на фотоматериалах, полученных с беспилотных летательных аппаратов (БПЛА) в треке "Разработка алгоритмов распознавания. В рамках кейса нужно было разработать алгоритм по автоматическому выявлению аномалий на изображении и разработать веб-интерфейс для загрузки и разметки изображений. В этой статье я бы хотел рассказать о нашем решении для детекции аномалий с помощью модели YOLOv5 в виде практического туториала. Кому интересно, прошу под кат.
Проект Lacmus: как компьютерное зрение помогает спасать потерявшихся людей
Возможно, вы уже знаете про инициативу Machine Learning for Social Good (#ml4sg) сообщества Open Data Science. В её рамках энтузиасты на бесплатной основе применяют методы машинного обучения для решения социально-значимых проблем. Мы, команда проекта Lacmus (#proj_rescuer_la), занимаемся внедрением современных Deep Learning-решений для поиска людей, потерявшихся вне населённой местности: в лесу, поле и т.д.
Понимаем декораторы в Python'e, шаг за шагом. Шаг 1
На Хабре множество раз обсуждалась тема декораторов, однако, на мой взгляд, данная статья (выросшая из одного вопроса на stackoverflow) описывает данную тему наиболее понятно и, что немаловажно, является «пошаговым руководством» по использованию декораторов, позволяющим новичку овладеть этой техникой сразу на достойном уровне.
Итак, что же такое «декоратор»?
Впереди достаточно длинная статья, так что, если кто-то спешит — вот пример того, как работают декораторы:
def makebold(fn):
def wrapped():
return "<b>" + fn() + "</b>"
return wrapped
def makeitalic(fn):
def wrapped():
return "<i>" + fn() + "</i>"
return wrapped
@makebold
@makeitalic
def hello():
return "hello habr"
print hello() ## выведет <b><i>hello habr</i></b>
Telegram-бот на Dart + Docker + VDS
Telegram-бот на Dart + Docker + VDS
Эта статья представляет собой реальный кейс, когда мне пришлось загружать фотографии на VDS (которые пользователь отправил боту), отправлять их в базу данных, а затем удалять их с VDS.
Создание Python Telegram бота и его deploy на виртуальную машину
В 2021 г. ожидается рост числа запросов на чат-боты на 15-20% от организаций из госсектора, образования, медицины, логистики, ретейла и e-commerce, промышленных и добывающих компаний.
Всвязи с этим остро встает вопрос: как запустить своего первого телеграм-бота и заставить работать его 24/7 на удаленной виртуальной машине.
Как прикрутить нейросеть к сайту по-быстрому
В данном материале предлагается, приложив небольшие усилия, соединить python 3.7+flask+tensorflow 2.0+keras+небольшие вкрапления js и вывести на web-страницу определенный интерактив. Пользователь, рисуя на холсте, будет отправлять на распознавание цифры, а ранее обученная модель, использующая архитектуру CNN, будет распознавать полученный рисунок и выводить результат. Модель обучена на известном наборе рукописных цифр MNIST, поэтому и распознавать будет только цифры от 0 до 9 включительно. В качестве системы, на которой все это будет крутиться, используется windows 7.
В Data Science не нужна математика (Почти)
Привет, чемпион!
Ребята с «вышкой» всё время умничают, что в Data Science нужна «математика», но стоит копнуть глубже, оказывается, что это не математика, а вышмат.
В реальной повседневной работе Data Scientist'а я каждый день использую знания математики. Притом очень часто это далеко не «вышмат». Никакие интегралы не считаю, детерминанты матриц не ищу, а нужные хитрые формулы и алгоритмы мне оперативнее просто загуглить.
Решил накидать чек-лист из простых математических приёмов, без понимания которых — тебе точно будет сложно в DS. Если ты только начинаешь карьеру в DS, то тебе будет особенно полезно. Мощь вышмата не принижаю, но для старта всё сильно проще, чем кажется. Важно прочитать до конца!
Разбор базового решения для задачи привязки аэроснимков к местности с Цифрового Прорыва
Привет, Хабр!
Это последняя из трех статей, в которых я (автор канала Зайцем по ХаХатонам) рассказываю о задачах Всеросийского чемпионата Цифрового Прорыва, объясняю базовые решения (baseline) и даю советы, которые помогут подняться выше по рейтингу. В данной статье будет рассмотрен кейс от МФТИ по привязке аэроснимков к местности.
Данная статья является особенной, так как она содержит исправленный бейзлайн, который изначально не работал. Сейчас же приведенное ниже решение дает результат на 9 место в лидерборде!
Спойлер: в конце статьи есть советы для улучшения базового решения.
Deep Learning в вычислении оптического потока
Склеиваем несколько фотографий в одну длинную с помощью компьютерного зрения
Повышение качества склейки панорамы с помощью согласования графа проективных преобразований
Привет, Хабр! Сегодня мы расскажем про один из способов повышения качества склейки панорамы. Существует широко используемый подход склейки панорамы плоских объектов, но поскольку данный подход не лишен недостатков, мы предлагаем свое улучшение.
Разбираемся, как подавить шум в речи с помощью глубокого обучения и OpenVINO
Данная статья будет полезна студентам и тем, кто хочет разобраться с тем, как происходит шумоподавление речи (Speech Denoising) с помощью глубокого обучения. На Хабре уже были статьи по данной тематике несколько лет назад (раз, два), но нашей целью является желание дать несколько более глубокое понимание процесса работы со звуком.
Как мы заняли 1-е место в задаче Matching в соревновании Data Fusion Contest 2022, или как нейронка обогнала бустинг
На платформе ODS.ai прошло соревнование по машинному обучению Data Fusion Contest 2022 от банка ВТБ.
Мы, команда Лаборатории ИИ Сбера и Института искусственного интеллекта AIRI, приняли решение поучаствовать в контесте, когда увидели, что тема соревнования сильно пересекалась с нашими исследованиями. Мы заняли первое место на private leaderboard в основной задаче Matching. Здесь я хотел бы описать решение, которое у нас получилось.
В рамках соревнования предлагались: датасет, содержащий транзакции, совершенные клиентами ВТБ по банковским картам, кликстрим (данные о посещении web-страниц) клиентов Ростелекома и разметка соответствия между клиентами из этих двух организаций. Соответствие устанавливается если два клиента – это один и тот же человек. Все данные были обезличены, а сами датасеты синтезированы на основе реальных данных таким образом, чтобы сохранить информацию о поведении пользователей.
В программу мероприятия входило пять задач разной сложности с разным призовым фондом. Мы решили сосредоточится на главной задаче Matching, как на самой сложной и самой интересной.
Информация
- В рейтинге
- 6 321-й
- Зарегистрирован
- Активность