AI-хайп, честно говоря, слегка задолбал. Кажется, что все вокруг только и делают, что оптимизируют свою работу с помощью AI и в ус не дуют. Все эти возвышенные презентации про amazing и awesome инновации от людей, которые слабо себе представляют, чем энкодер отличается от декодера и почему трансформеры в нейросетях не сражаются с автоботами, мало того, что набивают оскомину и отнимают время, так еще и погружают в грёзы бизнес-руководителей и создают крайне завышенные ожидания.
Вспоминаю, как на одном обмене опытом со стартапами они чётко делились на 2 группы: первая – с менеджерами про невероятные инновации и всеобщее благоденствие, а вторая – с инженерами, которые с красными глазами рассказывали, что так и не смогли победить галлюцинации, что окно контекста заканчивается очень быстро и что для того, чтобы на нормальном продакшн использовании вся эта магия заработала, нужны огромные инвестиции в инфраструктуру, оркестратор, агенты, векторные базы, кратковременную и долговременную память и так далее. Поэтому хотелось собрать в одном месте понятное руководство и для разработчиков, пробующих LLM-ки для своих задач, и для людей из бизнеса, чтобы погрузить в контекст.