Как стать автором
Обновить
-1
0
Глеб @snackTate

Пользователь

Отправить сообщение

Как мы выбирали модель классификатора на основе международных научных практик для сервиса e-mail-рассылок

Уровень сложностиСредний
Время на прочтение19 мин
Количество просмотров2.1K

Всем привет, на связи Елисеев Арсений. Сегодня расскажу, как разрабатывал модель классификатора для сервиса e-mail-рассылок Pochtaboy. Сам продукт находится еще в стадии тестирования, однако у него есть первые пользователи, на которых мы и проверим эффективность выбранной модели. 

Читать далее

Классификация текстов в spaCy: пошаговая инструкция

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров5.7K

Вы узнаете, как реализовать классификатор текстов при помощи библиотеки spaCy, а также несколько полезных лайфхаков, которые помогут ускорить обработку данных.

Читать далее

Быстро, точно, градиентно: как наш подход к градиентному бустингу повышает эффективность моделей

Время на прочтение11 мин
Количество просмотров4.1K

Доброго времени суток, уважаемые читатели! Сегодня мы вновь рады приветствовать вас в увлекательном мире дата-сайентистов банка "Открытие". На связи Иван Кондраков, Константин Грушин и Станислав Арешин. Недавно мы поделились с вами нашим пайплайном разработки линейных моделей для решения задач бинарной классификации. Теперь же мы решили поведать о нашем опыте построения моделей градиентного бустинга. За последнее время команда проделала колоссальную работу: мы протестировали различные методы отбора факторов, нашли новые инсайты в данных, провели интересную (а, главное, полезную!) аналитическую работу и решили несколько Ad-hoc задач. Зовите всех к экранам, мы начинаем!

Го к туториалу

ML-пайплайн классических банковских моделей классификации

Время на прочтение10 мин
Количество просмотров5.3K

Всем привет! С вами на связи дата-сайентисты банка "Открытие" Иван Кондраков и Константин Грушин. В прошлой статье мы рассказывали про решение, которое позволило повысить эффективность в проверке гипотез для моделей. Если вы успели с ней ознакомиться, то уже знаете, что наша команда занимается разработкой и развитием пула моделей принятия решений о выдаче кредитных продуктов и банковских гарантий для малого и среднего бизнеса. Сегодня настало время поговорить с вами про пайплайн, который используется для разработки таких моделей. Мы построили достаточно много моделей, так что нам точно есть чем поделиться. К тому же существенный вклад в развитие такого универсального алгоритма внес каждый член команды.

Читать далее

Как интерпретировать предсказания моделей в SHAP

Время на прочтение5 мин
Количество просмотров49K
Одной из важнейших задач в сфере data science является не только построение модели, способной делать качественные предсказания, но и умение интерпретировать такие предсказания.

Если мы не просто знаем, что клиент склонен купить товар, но так же понимаем, что влияет на его покупку, мы сможем в будущем выстраивать стратегию компанию, направленную на повышение эффективности продаж.
Читать дальше →

Открытый курс машинного обучения. Тема 6. Построение и отбор признаков

Время на прочтение24 мин
Количество просмотров191K

Сообщество Open Data Science приветствует участников курса!


В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.



Читать дальше →

Алгоритм поиска ключевых словосочетаний «на пальцах». Анализируем новости

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров5.4K

В современном мире объем данных в интернете постоянно растет с огромной скоростью. Возникает логичный вопрос: как ориентироваться в этом информационном потоке? 

Чтобы упростить себе задачу поиска и обобщения информации IT-энтузиасты применяют технологии генеративно обученных чат-ботов. Наиболее широкое распространение получил  ChatGPT. Яндекс, в свою очередь, добавил в браузер YandexGPT, который позволяет тезисно ознакомиться с содержанием страницы. Всё чаще вакансия Prompt-инженера начинает встречаться на hh и Хабр Карьере. Специалисты и чат-боты помогают конечному пользователю экономить время для поиска необходимой информации. 

Но что делать, если возможности обратиться за помощью к подобным технологиям нет? Указанные выше языковые модели нельзя интегрировать в собственные проекты, сценариев их использования много, но они всё равно ограничены. 

В статье мы расскажем, как (не без нейронных сетей) можно создать простой алгоритм на Python, который поможет извлекать ключевые слова из любого текста, тем самым избавляться от ненужной информации и автоматизировать процесс анализа материалов. Мы будем работать с русским текстом, а именно — с новостными постами. Поэтому в частном случае используются пакеты для обработки, поддерживающие именно русский язык. В том числе используются модели, обученные на корпусах текстов с новостной семантикой. 

Читать далее

Функциональное программирование в Python: ежедневные рецепты

Уровень сложностиСредний
Время на прочтение21 мин
Количество просмотров17K
Как говорится, спроси пять программистов, что такое функциональное программирование, получишь шесть разных ответов. В целом это программирование через функции в их математическом понимании, то есть когда функция принимает что-то на вход и что-то возвращает на выходе, не меняя глобального состояния.

В своей команде — команде разработки инструментов для разработчиков под KasperskyOS — мы создаем разные интересные консольные утилиты, эмулятор, обеспечиваем интеграцию с IDE и так далее. И для этого мы используем разные языки — C++, C, TypeScript; но больше всего пишем на Python.



В этой статье, которая написана по следам моего выступления на конференции PiterPy, я обращаюсь к практикующим разработчикам — расскажу о том, какие функциональные приемы можно использовать в этом языке. Сконцентрируюсь на практике — на тех примерах, которые можно использовать уже буквально сейчас, не переписывая свой проект.
Читать дальше →

Apache Spark и PySpark для аналитика. Учимся читать и понимать план запроса в SparkUI

Время на прочтение7 мин
Количество просмотров19K

Продолжаем выводить ваши знания о PySpark на новый уровень :) В этот раз расскажем, что такое план запроса, как его смотреть, и что делать, чтобы уточнить узкие места в расчётах.

Читать далее

Как начать в DL: книги и курсы

Время на прочтение3 мин
Количество просмотров15K

What's up guys!

В этой статье мы поговорим о полезных материалах для изучения тем глубокого обучения и немного ИИ. В статье я дам список полезных ресурсов и немного советов по.

Читать далее

Яндекс Карты открывают крупнейший русскоязычный датасет отзывов на организации

Время на прочтение6 мин
Количество просмотров11K

Сегодня мы хотим поделиться новостью для всех, кто занимается анализом данных в области лингвистики и машинного обучения. Яндекс выкладывает в открытый доступ крупнейший русскоязычный датасет отзывов об организациях, опубликованных на Яндекс Картах. Это 500 тысяч отзывов со всей России с января по июль 2023 года.

В этой статье я расскажу, чем полезны отзывы с точки зрения исследований, в чём особенность этого датасета, а также покажу примеры задач, которые можно решать с его помощью.

Читать далее

Другой GitHub: репозитории по Data Science, визуализации данных и глубокому обучению

Время на прочтение6 мин
Количество просмотров35K

(с)

Гитхаб — это не просто площадка для хостинга и совместной разработки IT-проектов, но и огромная база знаний, составленная сотнями экспертов. К счастью, сервис предоставляет не просто инструменты для работы с открытым исходным кодом, но и качественные материалы для обучения. Мы выбрали некоторые популярные репозитории и отсортировали их по количеству звезд в порядке убывания.

Эта подборка поможет разобраться, на какие именно репозитории стоит обратить внимание, если вас интересует работа с данными и сфера глубокого обучения.
Читать дальше →

Бутстрап: швейцарский нож аналитика в A/B-тестах

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров20K

Вам надоело каждый раз разбираться какую гипотезу, а главное с какими ограничениями к имеющимся данным проверяет бесчисленное множество статистических тестов?
Тогда бутстрап — это ваш выбор. Он не требует никаких параметрических предположений о данных или какой-либо нетривиальной математики и, вместе с тем, может быть применен к широкому спектру статистических оценок.

Читать далее

От логики и риторики до теории множеств и матанализа. Полезные материалы по Data Science и машинному обучению

Уровень сложностиСредний
Время на прочтение21 мин
Количество просмотров15K

Привет, Хабр! Меня все еще зовут Ефим, и я все еще MLOps-инженер в отделе Data- и ML-продуктов Selectel. В предыдущей статье я кратко рассказал про основные ресурсы, которые могут помочь начинающему специалисту ворваться в бурлящий котел Data Science. Но после выхода материала я понял, что задача систематизации знаний гораздо сложнее, чем казалось. Настолько, что проиллюстрировать ее можно только табличкой ниже:


В этом тексте хочу исправиться: разбить знания по Data Science и машинному обучению на несколько теоретических блоков и дать больше полезных материалов. Подробности под катом!
Читать дальше →

Почему анализ ошибок – это начало разработки ML системы, а не конец?

Время на прочтение20 мин
Количество просмотров13K

Мы школа онлайн-образования, которая уже три года делает курсы по Data Science и разработке. Одна из наших целей – собрать коммьюнити классных специалистов и делиться крутыми и неочевидными знаниями. Так был рождён Симулятор ML – место, в котором начинающие и опытные специалисты решают задачи разной сложности, разрабатывают проекты в командах, осваивают новые инструменты, развивают продуктовое мышление и постоянно растут в профессии.

А, как это свойственно коммьюнити, горящему идеей, студенты и авторы хотят делиться своими инсайтами и открытиями, которые дадут свежий взгляд на устоявшиеся практики. Сегодня хотим поделиться статьей автора Симулятора ML Богдана Печёнкина о том, как лучше использовать анализ ошибок для разработки ML систем.

Читать далее

Пять книг про NLP, с которых можно начать

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров18K

Всем привет! Меня зовут Валентин Малых, я — руководитель направления NLP-исследований в MTS AI, вот уже 6 лет я читаю курс по NLP. Он проходит на платформе ODS, а также в нескольких университетах. Каждый раз при запуске курса студенты спрашивают меня про книги, которые можно почитать на тему обработки естественного языка. Поскольку я все время отвечаю одно и то же, появилась идея сделать пост про мой список книг, заодно описав их. 

Читать далее

Machine Learning: хорошая подборка книг для начинающего специалиста

Время на прочтение4 мин
Количество просмотров28K

Книга, как раньше, так и сейчас, — основной источник знаний. Во всяком случае, один из основных. И читать книги нужно специалисту любого профиля и уровня. Сегодня публикуем относительно небольшую подборку книг для специалистов по машинному обучению. Как всегда, просьба: если у вас есть собственные предпочтения по книгам в этой отрасли, расскажите о них в комментариях.

Читать далее

Чему учат на курсах Data Science? Примеры задач для аналитика на фармрынке

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров10K

В заметке приведены некоторые актуальные аналитические задачи индустрии. С помощью этого списка вы можете оценить насколько вам может быть интересно учиться на DA/DS, а если у вас уже есть опыт, то обогатите свои знания задачами из фармацевтической отрасли.

Читать далее

Пережевывая Матрицу Несоответствий — Confusion Matrix

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров17K

Понятие Confusion Matrix является довольно простым в объяснении, но при этом начинающим Data Scientist-специалистам бывает порой нелегко разобраться в отношениях True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN) — кирпичиками, составляющими данную матрицу. Цель этой статьи познакомить читателя с альтернативным представлением Матрицы Ошибок. Данный способ, по мнению автора, является наиболее наивным методом графического восприятия самой Матрицы Несоответствий, не предполагающий запоминания самой таблицы матрицы. Данный подход позволит легко ориентироваться в выводах, основанных на комбинации элементов Confusion Matrix, глубже понять проблему дисбаланса классов в задачах классификации.

Читать далее

Шпаргалка по Seaborn. Делаем матрицы красивыми

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров12K

Привет, Хабр!

Часто в работе аналитика данных при подготовке очередного отчета или презентации, колоссальное количество времени уходит именно на графическую составляющую подготовки.

Ведь все хотят сделать отчет не только информативным, но и визуально привлекательным.

В этой статье мы разберем основные шаги, которые помогут сделать ваши матрицы стильными и продающими ваши результаты, используя лишь две основные библиотеки визуализации в Python - Seaborn и Matplotlib.

Читать далее

Информация

В рейтинге
Не участвует
Откуда
Ставрополь, Ставропольский край, Россия
Дата рождения
Зарегистрирован
Активность