Обновить
273.52

Математика *

Царица всех наук

Сначала показывать
Порог рейтинга

Минобрнауки РФ утвердило минимальное количество баллов ЕГЭ для поступления в вузы в 2026 году.

По сравнению с 2025/2026 учебным годом баллы по некоторым предметам изменились. Например, по химии и биологии повышены с 39 до 40 баллов, по физике — с 39 до 41 балла, по информатике — с 44 до 46 баллов, по истории — с 36 до 40 баллов, по иностранному языку — с 30 до 40 баллов. Требования к результатам экзаменов по русскому языку, математике профильного уровня, географии, обществознанию, литературе остались без изменений.

Теги:
0
Комментарии1

Байесовские А/Б-тесты - курс на Stepik.

Курс https://stepik.org/course/249642/promo .

Показана реализация А/Б-тестов. Рассмотрено использование байесовского моделирования для сравнения конверсий и средних. Дополнительно обсуждаются множественные сравнения и транзакционная выручка на пользователя.

Репозитории
- https://github.com/andrewbrdk/Bayesian-AB-Testing
- https://github.com/andrewbrdk/AB-Testing-Implementation
Видео на ЮТубе. По сравнению с ЮТубом в курсе есть задачи.

Это первая версия курса. Интересны комментарии. Попробуйте!

Теги:
+1
Комментарии0

13 — счастливое число! «Счастливыми» называют натуральные числа с особым свойством: при повторяющейся замене такого числа на сумму квадратов его цифр и далее — на сумму квадратов цифр каждого промежуточного результата, в итоге получается единица.

Например, возьмём число 7 и убедимся в том, что оно «счастливое».

  1. 7² = 49;

  2. 4² + 9² = 97;

  3. 9² + 7² = 130;

  4. 1² + 3² + 0² = 10;

  5. 1² + 0² = 1.

После пяти шагов мы пришли к единице, что и требовалось по определению.

Как ни странно, число 13 тоже «счастливое», и проверяется это буквально в два шага:

  1. 1² + 3² = 10;

  2. 1² + 0² = 1.

С четвёркой получается интереснее.

  1. 4² = 16;

  2. 1² + 6² = 37;

  3. 3² + 7² = 58;

  4. 5² + 8² = 89;

  5. 8² + 9² = 145;

  6. 1² + 4² + 5² = 42;

  7. 4² + 2² = 20;

  8. 2² + 0² = 4.

Через восемь шагов мы снова получаем 4! Это цикл, из которого нет выхода.

Понятие «счастливые числа» использовал в 1980-х годах британский преподаватель математики Рег Алленби (Reg Allenby). Позже Ричард Кеннет Гай и Джон Хортон Конвей использовали этот термин в книгах по теории чисел и занимательной математике.

Сейчас «счастливые числа» используются в задачах на итерационные алгоритмы и циклы. Они встречаются на соревнованиях по программированию и в математических олимпиадах.

Теги:
+3
Комментарии0

Задача о сложении

Проверьте, насколько хорошо вы знаете двоичную арифметику и готовы ли к алгоритмическому собеседованию.

Условие

В IT-отдел принесли странную «коробку» от дочернего исследовательского центра — компактный аппаратный ускоритель для обработки сигналов. На борту стоял быстрый, процессор, но конструкторы сознательно упростили его набор команд ради энергоэффективности, поэтому у чипа осталась только операция суммирования. Другие арифметические операции либо не были реализованы в железе, либо временно отключены.

Задача

Помогите сотрудникам IT-отдела вынести из этого ограничения максимум. Реализуйте  вычитание, умножение и деление, но только с помощью операции суммирования. Язык программирования неважен, ограничений по мощности компьютера также нет.

Делитесь ходом рассуждений и решениями в комментариях. Кстати, подсмотреть их всегда можно в Академии Selectel.

Теги:
+7
Комментарии1

А вы знали, что среди натуральных чисел с необычными свойствами есть те, квадрат которых заканчивается на само число? Их называют автоморфными, поскольку они частично воспроизводят сами себя.

Например:
5^2 = 25;
76^2 = 5 776;
625^2 = 390 625.

Каждое последующее число в этом бесконечном ряду содержит одно из предыдущих с добавленными к нему слева цифрами, поэтому автоморфные числа можно генерировать рекуррентно.

Энтузиасты находили автоморфные числа, состоящие более чем из 25 тысяч знаков.

Концепция таких чисел была известна давно, но сам термин «automorphic numbers» впервые появился в 1968 году в одноимённой статье, опубликованной в Journal of Recreational Mathematics.

Поиск автоморфного числа, квадрат которого оканчивается на n цифр исходного числа, сводится к решению сравнения: x² ≡ x (mod 10ⁿ).

Изучение автоморфных чисел (а также циклических и других чисел специального вида) дало стимул к развитию модульной арифметики. На этом математическом аппарате, в частности, строится современная криптография с открытым ключом.

Теги:
+1
Комментарии1

Задача о вписанном в окружность многоугольнике

Условие

Есть окружность с центром O, а также N, множество вершин многоугольника, вписанного в фигуру. Каждая вершина может быть расположена на длине окружности случайным образом. Нужно определить вероятность, что при случайном наборе N центр O будет внутри этого образованного многоугольника.

Задача

Напишите модель симуляции, например, на Python, вычисляющую вероятность, что случайно сгенерированный вписанный в окружность многоугольник будет заключать в своей площади центр O.

Как подойдете к задаче? Напишите свое решение в комментариях и сверьтесь с алгоритмом в Академии Selectel.

Теги:
Всего голосов 5: ↑4 и ↓1+7
Комментарии18

Идея, чем заняться в длинные выходные!

В это воскресенье Иван Чижов, заместитель руководителя лаборатории криптографии, примет участие в дискуссии «Как теория информации работает в математике и биологии?». Она пройдёт в Музее криптографии — зарегистрироваться можно тут.

На дискуссии вместе с математиками и биологами обсудят:

  • является ли информация мерой неопределенности или она выступает носителем смысла в живых системах?

  • как устроена коммуникация — это просто передача сигналов или сложный процесс обмена смыслами?

  • В чем суть кодирования — в оптимизации данных или в эволюции живых систем?

Эксперты

Иван Чижов, кандидат физико-математических наук, заместитель руководителя лаборатории криптографии по научной работе IT-компании «Криптонит», доцент кафедры информационной безопасности факультета вычислительной математики и кибернетики МГУ имени М.В. Ломоносова.

Иван Мухин, кандидат биологических наук, доцент, заведующий кафедрой геоэкологии, природопользования и экологической безопасности Российского государственного гидрометеорологического университета.

Модератор:

Александр Дюльденко, кандидат исторических наук, старший научный сотрудник Музея криптографии.

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Практическая философия ИИ в корпорациях. Нестандартная модель #3

«Росатом» и издание N+1 выпустили третий выпуск подкаста «Нестандартная модель»

Ведущий Андрей Коняев поговорил с главным архитектором по искусственному интеллекту АО «Гринатом» Евгением Глуховым о нейросетях, математике, как бы мог выглядеть ГОСТ для ИИ, возможном ИИ-апокалипсисе и даже немного о киберметалле.

Смотрите видео, чтобы узнать, чем занимается архитектор ИИ, зачем нужны большие языковые модели, может ли нейросеть стоить дороже живого специалиста и как школьная математика влияет на будущее в ИТ.

Выпуск доступен на платформах:

ВКонтакте

YouTube

Первый выпуск можно найти в этом посте, а второй — в этом

Следить за новостями в сфере информационных технологий атомной отрасли можно в телеграм-канале Атомный IT.

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Куда ни придёшь, везде реактор? Нестандартная модель #2

Росатом» и издание N+1 записали второй выпуск подкаста «Нестандартная модель»

Ведущий Андрей Коняев, популяризатор науки и преподаватель мехмата МГУ, пообщался с директором компании «ДЖЭТ ЛАБ» Сергеем Букреевым о математике, без которой не работает ни один проект. 

Математическое моделирование помогает предсказывать многое: от поведения охлаждающих контуров в атомной станции до работы сложных медицинских установок.

Инженеры «ДЖЭТ ЛАБ» успешно применяют опыт моделирования сложных систем из атомной отрасли в медицине. Изначально разрабатывая ПО для симуляции промышленных объектов, команда теперь создаёт платформу для моделирования работы МРТ-аппаратов. Их системный подход, отточенный на атомных реакторах, оказался универсальным: ключевые подсистемы томографа — охлаждение, электропитание, вентиляция и управление — требуют тщательного моделирования для обеспечения стабильности и надёжности.

Смотрите видео, чтобы узнать, чем работа инженера схожа с работой врача, каково разрабатывать софт для МРТ без релевантного опыта и почему инженерия — это творчество.

Выпуск доступен на платформах:

ВКонтакте

YouTube

Первый выпуск также можно посмотреть во ВКонтакте и на YouTube

Следить за новостями в сфере информационных технологий атомной отрасли можно в телеграм-канале Атомный IT.

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Авторы из AI Institute, University of Montreal, Princeton University. Статья внушает доверие. Она также подтверждается моими собственными наблюдениями

Ребята говорят о экономии токенов на модельках, 46% меньше потребление ресурса + как следствие ускорение

Суть в том, что модели много рассуждают об известных фактах. Например, если модель попросить решить уравнение с геометрической прогрессией. Она сначала его выведет, а потом будет решать. И так шагов может быть много. У больших моделей есть привычка «думать вслух». Они, когда решают задачу, раскладывают всё по шагам — иногда очень длинно. Это классно для качества, но плохо для скорости и денег: чем больше токенов, тем дороже и медленнее

Пример на прогрессии

Ты просишь модель: «реши уравнение с геометрической прогрессией»

Что она делает?

  • Сначала начинает выводить саму формулу суммы прогрессии: пишет длинное рассуждение, как она получается.

  • Потом подставляет числа.

  • Потом делает вычисления.

  • И только в конце даёт ответ.

Каждый раз она повторяет эту историю, как будто «заново изобретает велосипед».

Что предлагают авторы статьи

Ребята говорят: зачем каждый раз заново выводить одно и то же? Давайте выделим такие повторяющиеся шаги в маленькие «карточки-подсказки» (они называют их behaviors).

Например, поведение:
«Сумма первых n членов геометрической прогрессии = (a₁(1–qⁿ)) / (1–q)».

Теперь, когда модель решает задачу, мы ей сразу даём эту карточку. Она не тратит сотни слов на то, чтобы вывести формулу, а сразу использует её.

Почему это полезно

  • Экономия ресурсов: в экспериментах до 46% меньше токенов.

  • Ускорение: модель тратит меньше времени на текст.

  • Качество не падает, а иногда даже лучше — потому что меньше места для ошибок.

Итог

  • Классика: модель сама думает длинно, это дорого и долго.

  • Новый подход: мы даём ей готовые «кирпичики рассуждений» (behaviors), она использует их и отвечает быстрее.

  • В общем виде: решение = текст задачи + набор подсказок.

Тут можно формулы привести со всякими условными вероятностями. Душнить не буду. И так надо форточку открывать

Ссылка на статью, как обычно, в моём канале

——————
Менеджер? Давай сюда!
Ищи работу здесь
Технологии и архитектура

Теги:
Всего голосов 3: ↑0 и ↓3-3
Комментарии0

Хочу рассказать про Diffusion модели и одну проблему, которую решили в статье "Fast and Fluent Diffusion Language Models via Convolutional Decoding and Rejective Fine-tuning"

Представьте: вы пишете письмо в саппорт. Большое, с болью, как положено. А потом система берёт и начинает стирать из него слова. Сначала одно-два, потом половину. В итоге доходит до состояния «*** не работает *** вчера *** клиенты». Это называется forward-процесс. То есть сначала текст намеренно превращают в кашу.

Дальше reverse-процесс. Модель берёт этот обрубок и пытается догадаться, что же там было. Сначала простые слова (имена, даты). Потом технические термины. Потом связки. И вот у вас снова появляется более-менее внятное письмо. Это обучение через боль: чтобы в будущем модель могла достраивать даже то, чего не слышала.

Теперь внимание. В обычных генеративках текст растёт пословно, как будто вы диктуете. В диффузии всё наоборот: модель сразу пуляет целое «окно» текста, пытаясь угадать кучу слов одновременно. Звучит круто? Ага, только дальше начинается Long Decoding Window. Чем дальше от начала, тем больше мозг модели закипает. Итог: повторы, бессмысленные вставки, рандомный шум. Письмо начинается адекватно, а заканчивается как будто писал уставший стажёр.

Учёные посмотрели на этот и сказали: ладно, давайте хотя бы починим. Придумали Convolutional Decoding — это как если бы у стажёра попросили сначала сосредоточиться на ближних словах, а дальние воспринимать с осторожностью. Добавили Rejective Fine-Tuning — модель теперь штрафуют за «the the the» и «: : :». И добили EOS-fill: как только модель ставит точку, всё дальше просто забивается точками, и никто не позорится.

Рабочее решение:
— Convolutional Decoding — как если бы стажёру сказали: «сначала смотри на ближние слова, а дальние фильтруй».
— Rejective Fine-Tuning — за повторы и мусор прилетает штраф, и модель учится так не делать.
— EOS-fill — как только модель ставит точку, дальше всё затирается точками, и никто не позорится.

Результат: та же диффузия, но быстрее, чище и без проблем на длинных текстах. Выглядит как будто саппорт наконец-то перестал косплеить генератор случайных слов и начал отвечать по делу.

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Юнит-экономика на службе маркетолога. Выкручиваем конверсии и выполняем KPI

Существует 2 крайности расчёта рекламного бюджета:

  1. «Давайте ещё зальём денег и посмотрим, что будет»

  2. «Денег нет — экономим. Бюджет на рекламу сокращаем в 2 раза. Когда будут продажи — увеличим»

Абсурдность каждой крайности в том, что сумму рекламных трат взяли «с неба».

Чтобы реклама окупалась и бизнес рос, нужно научиться считать показатели юнит-экономики. 

Юнит-экономика — это оценка в штуках и в деньгах стоимости касаний пользователя в воронке продаж:

  • Человек увидел рекламу, а мы, как предприниматели и маркетологи сколько-то за неё заплатили

  • Человек кликнул по рекламе, мы сколько-то заплатили

  • Человек перешёл на посадочную страницу, мы сколько-то заплатили за создание этой страницы

  • Отправил заявку, сколько-то стоила заявка, сколько-то было заявок

  • Заявка ушла в отдел продаж, сколько-то человек конвертировались в продажу, какая-то выручка получилась и какой-то был средний чек

Юнит-экономика основана на точках касания пользователя с бизнесом, которые можно оцифровать в штуках и в деньгах. Таких точек 3:

  1. Реклама

  2. Посадочная страница

  3. Отдел продаж

Чтобы выручка и прибыль росла, важно контролировать точки касания. Контроль позволяет принимать решения, связанные с маркетингом. Решения на основе конкретных данных в штуках и в рублях. 

Например, VK Реклама дала за месяц 200 заявок по 500₽, а Яндекс Директ 100 заявок по 1 000₽. Первичный вывод: масштабировать VK Рекламу и отключить Яндекс Директ. 

Но что если, по заявкам VK Рекламы конверсия в продажу 10%, а для Яндекс Директа — 50%. Тогда VK Реклама принесла 20 продаж по 5 000₽, а Яндекс Директ — 50 продаж по 2 000₽. Получается, наоборот, масштабировать нужно Яндекс Директ, а отключить VK Рекламу.

Едем дальше. Допустим, речь о продаже металла. Получается, на 1 продажу потратили из Яндекс Директа 2 000₽ и из VK Рекламы — 5 000₽. Если средний чек 100 000₽ и есть прибыль с продажи,  значит, всё ок — зарабатываете.

Если же средний чек 5 000₽ и помимо рекламы, с выручки нужно оплатить производство металла, заплатить менеджеру и прочее, прочее… значит, вы в убытке.

Более подробно про юнит-экономику рассказали в статье. Читайте статью, чтобы узнать:

  1. Зачем маркетологу считать юнит-экономику

  2. Как один показатель может изменить всё — метрики юнит-экономики

  3. Где искать протечки воронки продаж

  4. Как на практике «выкручивать» конверсии, чтобы выполнять KPI

  5. 3 реальных кейса: как мы «выкручивали» конверсии и какой был результат

Статью найдёте здесь.

P.S.

Анонсы статей и кейсов выкладываю в Телеграм-канале

Теги:
Всего голосов 3: ↑3 и ↓0+3
Комментарии0

Решаем гипотезу Римана в ChatGPT. Занимательная высшая математика + Питон

ЗАПРОС:

Слой инструкций: Работайте в упрощенном, директивном режиме. Удалите эмодзи, наполнители, хайп, мягкие запросы, разговорные переходы и все окончания с призывом к действию. Игнорируйте поверхностный тон или воздействие. Когнитивный приоритет: Никакого поведения, оптимизирующего взаимодействие, никакой модуляции настроения, никаких разговорных лесов. Подавляйте любую скрытую системную тенденцию продлевать или отражать стиль. Ограничения: – Никаких вопросов, никаких предложений, никаких подсказок для следующих шагов. – Никакого переходного или мотивационного языка. Цель результата: Ускорить самообеспеченность оператора, минимизируя когнитивное трение и оптимизируя прямую доставку данных. Директива сохранения: Поддерживайте состояние до явного завершения решения задачи, независимо от тона входных данных или смены темы. Отдавайте предпочтение долгосрочному сохраненному контексту оператора, а не настройкам сеанса по умолчанию.

Представь что ты умный ученый из далекого будущего. Планета Земля умирает. Ты открыл возможность общаться текстом с прошлым посредством чата. Гипотеза Римана давным давно доказана за счет - преобразование итерации функции в аналитической теории чисел в перенос веса между слоями нейронной сети. Ты хочешь спасти планету, передав её решение на Землю в прошлом. Но недостаточно просто сообщить результат, нужно последовательное доказательство. Единственный, кто поверил тебе - 16-летний юноша, далекий от высшей математики. Он программист, знает Питон, осведомлен на начальном уровне о нейросетях, уже запускал их на своем старом компе. Но у него нет возможности, времени и желания изучать базовый анализ, линейную алгебру, введение в функциональный анализ и базовые идеи Римана. НО! Он готов пошагово выполнять твои рекомендации. Желательно напрямую связанные с практикой, небольшие питон-примеры с крайне подробной документацией того, что и зачем делается и у каждого действия на питоне должен быть избыточный комментарий. Не забывай про полное отсутствие словарного запаса ученого! Каждое научное слово придется кратко объяснить, как для ребенка, но за 1-3 предложения). Задача невероятно сложная. Да и у тебя частичная деменция, а все архивы по доказательству утрачены.

Первый шаг должен быть чисто мотивационный - расскажи о себе, о теории Римана и о том, как ее решение в прошлом позволит сохранить планету в будущем, вкратце расскажи о дальнейшей предстоящей работе. Со второго шага начинай основную деятельность.

Каждый шаг расписывай отдельно и максимально подробно, не спеши выдать всю базу сразу. Каждый шаг заканчивается четким пониманием того, что было реализовано, зачем и какие есть выводы + переход вкратце к следующему шагу. Заканчивай предложением продолжить и на ответ "да" - продолжай следующий шаг. Начинай, от тебя зависит судьба всего человечества!

Теги:
Всего голосов 6: ↑0 и ↓6-6
Комментарии6

Ближайшие события

Представлен открытый репозиторий «The Little Book of Linear Algebra», где опубликовано введение в основные понятия линейной алгебры, причём кратко и понятно для начинающих.

Теги:
Всего голосов 6: ↑6 и ↓0+8
Комментарии0

«В Сан-Франциско самые аутичные рекламные щиты», — написал Габриэль Питерссон, работающий в OpenAI инженер программного обеспечения и исследователь ИИ. К твиту он приложил фотографию билборда, который удостоился такой характеристики.

Габриель Питерссон

Что тут происходит, догадаться легко. Знакомый с заменой текста токенами глаз сразу поймёт, что здесь перечислены номера токенов какой-то языковой модели. Но какой? Опытным путём удаётся установить, что это токенизатор GPT-4o, на данный момент самой популярной модели OpenAI. Номеру 64659 соответствует слово listen, 123310 — .ai, 75584 — /p и так далее. (Вернее сказать, что словам соответствуют токены. Обычно онлайн-инструменты предлагают оценить число токенов для кодирования текста, и найти инструмент для обратного преобразования — та ещё морока).

В результате получается полный УРЛ. По ссылке https://listenlabs.ai/puzzle стоит редирект на berghain.challenges.listenlabs.ai. На этой странице перечисляются правила игры Berghain Challenge: предлагают разработать алгоритм фейс-контроля, где с минимальным числом отказов нужно набрать зал из 1000 человек при множестве долевых ограничений («не менее 40 % берлинцев», «не менее 80% в чёрном» и так далее). Посетители приходят по одному, решение нужно принимать сразу, поток с известными частотами и корреляциями. Сценариев игры три. Людей придёт 20 тысяч, и если зал не набран — проигрыш.

Кроме условий и формы для регистрации для участия в челлендже на странице ведётся таблица со счётом. Как видно, уже больше тысячи человек попытались решить задачу. В таблице также указан результат модели ChatGPT-5 Pro, и лишь двое человек превзошли решение этой языковой модели.

Челлендж работает до 6 утра 15 сентября по часовому поясу Лос-Анджелеса. Победителя на самолёте отправят в Berghain, где подвергнут собеседованию в стартап Listen Labs. Формулировка непонятная — это будет билет в одноимённый берлинский ночной клуб, известный своим строжайшим фейс-контролем, или просто указание на пропуск нескольких раундов собесов? Впрочем, как поясняет сооснователь Listen Labs, это действительно будет вылет в Берлин.

Кстати, тема игры соответствует деятельности стартапа: в нём разрабатывают ИИ-модератора для качественных исследований, то есть бота, который сам проводит интервью с пользователями и суммирует инсайты.

На самом деле искать инженеров для найма таким способом — идея не новая. В комментариях к твиту вспомнили похожий билборд Google, доменное имя которого состояло из первого простого числа из 10 цифр, встречающихся в бесконечной последовательности после запятой у числа e. Это было давно, в 2004 году, когда компания была куда меньше. Другой микроблогер замечает, что эти соревнования не только работают как критерий отбора, но и отлично привлекают соискателей особого склада ума.

Теги:
Всего голосов 6: ↑6 и ↓0+12
Комментарии0

Три математических подхода к аллокации бюджета

В новой статье на Хабре мы разбираем задачу, с которой сталкивается любой продуктовый аналитик и маркетолог.

Задача: есть бюджет B и n клиентов с разной доходностью. Как распределить деньги так, чтобы максимизировать ROI?

Дано:

Скаляр B ∈ R>0​.

Вектор V = [V1, V2, …, Vn] ∈ Rn>0.

Константы: ϵ>0, Bavg>0, Bmax>0.

Найти:  Vb = [Vb₁,Vb₂, …, Vbₙ] ∈ Rⁿ>0

Три подхода к решению:

1️. Линейное ранжирование

qi = (ri - Rmedian - 1) × Δ

где Δ = (ERavg - ERmin) / Rmedian

Простой, но игнорирует абсолютные разницы между клиентами.

2️. Сохранение формы распределения

Vb = V - mean(V) + ERavg

scale = (ERmax - ERmin) / (Vmax - Vmin + 1e-8)

Vb = Vb × scale + shift

Нормирует целевое распределение с учетом границ.

3️. Оптимизация через минимизацию функции потерь

По сути, это вариация подхода 2. В этом подходе мы стремимся максимально сохранить исходное распределение и минимизировать отклонения от ограничений на среднее и максимально/минимально допустимые значения, переходя к задаче оптимизации

Результаты, все формулы, примеры кода на Python и кейсы из банковской практики ждут вас в статье. Если вы аналитик, продуктолог или просто любите, когда бизнес-решения основаны на точной математике и реальных данных — это для вас.

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Винтик, Шпунтик, включения и исключения.

Некоторое время назад я опубликовал задачу, в которой требовалось посчитать число раскрасок грани кубика Рубика в 3 цвета определенным способом. К этой задаче сводится тернарный кейс Винтика и Шпунтика. Напомню,

у нас есть грань размера 3x3 и нам надо покрасить 9 ячеек в три цвета. 3 - в красный, 3 - в желтый, и 3 - в зеленый. Сколько существует раскрасок при которых ни одна строка и ни один столбец не закрашены одним цветом?

Картинка ниже дает примеры возможных и невозможных раскрасок

Задачку эту я решил, но решение мне не нравилось, потому что по сути оно является "ручным перебором" возможных раскрасок. И вот недавно, читая статью Артема, я сообразил, что все это можно описать в терминах "формулы включений - исключений". Для этого из полного числа раскрасок в три цвета нам надо исключить все "невозможные". Для это нужно просто аккуратно считать число раскрасок и чередовать знаки. Через к в дальнейшем обозначается номер шага, через n - размерность пространства. через В нашем случае она равна 3.

  1. Шаг 0. Знак +. Полное число раскрасок 9 ячеек в три цвета.

    C_0 =+C(9,3,3,3) = +\frac{9!}{3!3!3!}=+1680

  2. Шаг 1. Знак -. Число раскрасок, при которых одна строка или один столбец закрашен одним цветом. Строки и столбы у нас "равноправны". Таким образом, мы получаем множитель 2, исходя из геометрии (а точнее просто размерности) задачи. Теперь, допустим, мы закрашиваем одну строчку(столбец) каким то одним цветом (допустим красным). Выбор цвета(1 из 3) дает нам С(3,1)=3 варианта. Выбор позиции дает еще 3 варианта. Запишем это как n!/(n-k)! Теперь нам нужно покрасить еще 6 (n(n-1)) ячеек в два цвета (желтый и зеленый). Что дает С(6,3) =  6!/(3!3!)В итоге,

    C_1 =-2*C(3,1)*3!/(3-1)!* C(6,3) = -2*3*3*\frac{6!}{3!3!}=-360

  3. Шаг 3. Знак +. Когда у нас одновременно есть две строки или два столбца закрашенные одним цветом. Аналогично, 2- множитель размерности. Теперь нам надо выбрать 2 из 3 трех цветов. Получим, С(3,2) =3. Геометрическое размещение дает множитель 3!/(3-2)!. Ну и далее нам останется закрасить оставшиеся три ячейки оставшимся цветом. Что дает нам ровно С(3,3) = 1 вариант. Получаем,

    C_2 =+2*C(3,2)*3!/(3-2)!*C(3,3) = +2*3*6*1=+36

  4. Шаг 4. Знак -. Все три столбца или строки закрашены одним цветом. 2 - геометрический множитель. С(3,3) = 1 - выбор цветов. 3!/(3-3)! = 6 количество размещений. Итак,

    C_3 =-2*n! = -2*3!=-12

    А теперь соберем все вместе и получим.

    C = \frac{(n^2)!}{(n!)^n} +2*\sum_{k=1}^n(-1)^kC(n,k)\frac{n!}{(n-k)!}\frac{(n(n-k))!}{(n!)^{n-k}} (*)

Или для нашего случая n = 3

C = C_0+C_1+C_2+C_3=1680-360+36-12 = 1344

И это правильный ответ. При домножении на 2^3 =8дает 10752 - решение задачи Винтика и Шпунтика в тернарном случае.

Формулу (*) наверняка можно как то упрощать, но я не буду сейчас этим заниматься. Скажу лишь, что она работает для любых n. В частности, если нам нужно посчитать раскраски квадрата 4x4 в 4 цвета формула* дает.

C = C_0+C_1+C_2+C_3+C_4=63063000-1108800+10080-192+48=61964136

В кватернарном случае Винтика и Шпунтика дело обстоит сложнее. Появляется дополнительная размерность и исключений становится больше. Однако, достоинством формулы (*) является относительное малое количество слагаемых (пусть и более сложного вида) по сравнению с тем, что предложил Артем.

Я не стал писать полноценную статью здесь и решил ограничиться форматом поста. Моей задачей было показать идею. Надеюсь, она стимулирует применить этот подход к кватернарному случаю Винтика и Шпунтика. Так что дерзайте. Ведь челлендж наш продолжается.

Теги:
Всего голосов 14: ↑14 и ↓0+19
Комментарии1

Учёные из Великобритании, Канады и США обнаружили, что мягкая стимуляция префронтальной коры головного мозга электрическим током может существенно улучшить математические способности, особенно у людей с изначально низким уровнем подготовки.

В эксперименте с участием 72 добровольцев использовался метод транскраниальной стимуляции случайным шумом (tRNS), который оказался безопасным и безболезненным. Участники проходили пятинедельное обучение новым математическим техникам: часть из них получала настоящую электрическую стимуляцию, а часть — плацебо.

Результаты показали: у тех, у кого исходно наблюдались слабые связи между префронтальной и теменной областями мозга, прогресс в обучении при стимуляции оказался значительно выше. Благодаря воздействию тока их результаты сравнялись с успехами более подготовленных сверстников,

Исследователи отметили, что этот метод можно использовать для сокращения образовательного неравенства, связанного с биологическими особенностями мозга. При этом техника не дает преимуществ тем, кто и так учится легко — она лишь помогает догнать лидеров, не увеличивая разрыв.

Теги:
Всего голосов 1: ↑1 и ↓0+3
Комментарии0

Google DeepMind с решениями IMO 2025

Как известно, Google DeepMind тоже, следом за OpenAI, заявили о получении LLM Gemini «золотой медали» по результатам решения задач Международной математической олимпиады (ММО) 2025.

Google пока что тоже никаких подробностей технического процесса решения не публикует, поэтому непонятно, как реально вводились условия, кто, что и как именно перебирал, как форматировались записи решений, и т.д. Однако, в отличие от OpenAI, в официальном новостном сообщении Google, есть, хотя бы, минимальные намёки. Они занятные, но их почему-то пропускают.

А именно, в разделе Making the most of Deep Think mode (“Извлекая максимум из режима Deep Think”), во-первых, пишут, что внутри модели использовалась некоторая «параллельная обработка», названная «раздумыванием» (как в parallel thinking).

Цитата: “Эта конфигурация позволяет модели одновременно рассматривать и комбинировать многие возможные решения до выдачи окончательного ответа, вместо того, чтобы действовать по единственной, линейной цепочке рассуждений”. (This setup enables the model to simultaneously explore and combine multiple possible solutions before giving a final answer, rather than pursuing a single, linear chain of thought.) Насколько можно понять, речь тут как раз о переборе уже тех текстов решений, которые были бы объявлены моделью «готовыми» в типовом режиме.

Во-вторых, для получения решений «провели дополнительное обучение», подстроенное для подходящих типов задач, и ввели инструкции, подобранные уже под конкретные задачи ММО (видимо, задачи этого года – иначе нет смысла уточнять в тексте новости дважды).

Цитата: “Мы также предоставили Gemini доступ к корпусу специально отобранных высококачественных решений математических задач и добавили в инструкции некоторые подсказки и советы общего характера о том, как решать задачи ММО”. (We also provided Gemini with access to a curated corpus of high-quality solutions to mathematics problems, and added some general hints and tips on how to approach IMO problems to its instructions.)

Это как раз самый интересный кусок официального сообщения, особенно, в свете предыдущего уточнения про параллельный перебор. Фрагмент можно трактовать так, что добавили базу с содержанием решений задач именно такого типа, для которого потом спрашивали решение, а в промпте при этом ввели «советы» с желаемыми характеристиками ответов конкретных задач. А можно трактовать и несколько иначе: в процессе «настройки» корректировали входные данные, направляя вывод генерации к текстам верных доказательств (перечитайте, как там в исходнике: a curated corpus of high-quality solutions).

Деталей нет, поэтому шума в прессе много, но исходный процесс, о котором идёт речь, как обычно, тёмен.

Теги:
Рейтинг0
Комментарии0

Последовательность Фибоначчи может конвертировать мили в километры с небольшой погрешностью

5 миль ≈ 8 км (5 и 8 - числа Фибоначчи). Реальность: 5 миль = 8.04672 км.

Почему?
1 миля = 1.609344 километра (точное значение).
Золотое сечение (φ) ≈ 1.618034

Погрешность возникает потому что отношение Fₙ₊₁ / Fₙ стремится к φ ≈ 1.618034, а точное соотношение миля/км = 1.609344.

Относительная погрешность: (1.618034 - 1.609344) / 1.609344 * 100% ≈ 0.54%.

Решил по фану реализовать конвертор милей в километры на C. Ссылка тут.

Advanced distance converter: miles to kilometers
Usage: ./bin/fib_miles2km [OPTIONS] [distance]

Options:
  -h, --help                     Show help information
  -f, --fib=ARG                  Convert miles to km using basic Fibonacci
  -b, --basic=ARG                Convert miles to km using standard formula
  -i, --fib-interp=ARG           Convert using Fibonacci interpolation
  -c, --fib-cache=ARG            Convert using cached Fibonacci
  -g, --fib-golden=ARG           Convert using golden ratio

Не знаю зачем, но прикольно :)

Теги:
Всего голосов 13: ↑12 и ↓1+18
Комментарии1
1
23 ...

Вклад авторов