Объект многоточие в Python

В этой статье мы подробнее рассмотрим объект многоточия, где можно использовать его в повседневной практике программиста, и какие известные пакеты Python используют его.

Высокоуровневый язык программирования

В этой статье мы подробнее рассмотрим объект многоточия, где можно использовать его в повседневной практике программиста, и какие известные пакеты Python используют его.

Ну здравствуй, Хабр! Меня зовут Кирилл Тобола, я Data Scientist в Сбере. Сегодня поговорим о данных. Думаю, ни для кого не секрет, что они бывают разные. В нашей работе нередко встречаются данные, содержащие сотни, а иногда и тысячи признаков. При этом количество информативных часто оказывается меньше общего числа признаков.
Если работать с ними, не производя предварительную обработку, то модели становятся сложными. Как следствие, данные требуют большего количества времени для работы и теряют в качестве. Это важно, поскольку проблема быстродействия может быть критичной для рекомендательных систем, а проблема качества свойственна, в принципе, для всех моделей. Перед нами встаёт вопрос, вернее, задача снижения размерности. Она заключается в уменьшении общего числа признаков для анализируемого набора данных. Обо всём этом сегодня и поговорим.

Всем привет! На волне хайпа с chatGPT мне захотелось попробовать попросить нашумевшую нейронку сделать за меня работу писателя. Я потратил 10 минут и вот, что из этого вышло.


Алгоритмы являются фундаментальными строительными блоками в программировании и играют важнейшую роль в современном мире, основанном на технологиях. Они представляют собой набор инструкций для эффективного выполнения задач, таких как сортировка данных, поиск в базах данных и составление прогнозов. Автоматизируя эти процессы, алгоритмы помогают экономить время, сокращать количество ошибок и принимать обоснованные решения. Они лежат в основе многих технологий, которые мы используем в повседневной жизни, от социальных сетей до электронной коммерции, и оказывают значительное влияние на различные отрасли, от финансов до здравоохранения.
Например, практически каждый современный графический редактор предоставляет своим пользователям множество полезных и удобных инструментов. Один из таких инструментов — функция заливки однородной области указанным цветом.
Работает она очень просто: необходимо выбрать желаемый цвет заливки и кликнуть указателем мыши на нужную область изображения. В результате выбранный регион изменит цвет на указанный. Этот механизм реализуется специальным алгоритмом, который носит название «метод „наводнение“», или, по-английски, flood fill.
В этой статье мы возьмём интересную задачу с собеседования, которую можно решить при помощи алгоритма flood fill, разберём её и познакомимся с несколькими вариантами решения. В этом поможет Евгений Бартенев, техлид и автор курса «Python-разработчик» в Яндекс Практикуме.

Почти все, с чем мы сталкиваемся в интернете, имеет отношение к API, а точнее к версиям этого программного интерфейса, использующим для работы HTTP-запросы. Когда мы хотим узнать прогноз погоды, интерфейс браузера или мобильного приложения вызывает API Яндекс.Погоды или API Gismeteo. Когда прокладываем кратчайший маршрут из одного места в другое, Яндекс.Карты вызывают соответствующее API.
Пользовательские API-интерфейсы могут быть реализованы на Python с использованием нескольких фреймворков. В этой статье остановимся на особенностях работы с одним из самых популярных вариантов — платформой FastAPI, библиотеки которой активно используют такие технологические гиганты, как Microsoft, Netflix, Uber. Речь пойдет о некоторых расширенных функциях FastAPI, которые могут использовать в своих проектах те разработчики, у кого уже есть базовые знания о фреймворке.

В статье представлен вариант решения частной задачи по упаковке кругов на прямоугольники с одной открытой стороной.
Включаемся в работу над проектом за 4 консольных команды

Алгоритмы в основе традиционных сетей настраиваются во время обучения, когда подается огромное количество данных для калибровки наилучших значений их весов, ликвидные («текучие») нейронные сети лучше адаптируются.
«Они способны изменять свои основные уравнения на основе входных данных, которые они наблюдают», в частности, изменяя скорость реакции нейронов, — рассказывает директор Лаборатории компьютерных наук и искусственного интеллекта Массачусетского технологического института Даниэла Рус.

Статья является продолжением ранее опубликованной на Habr статьи Еще одна инструкция о том, как с нуля начать писать UI автотесты на Python + Pytest + Playwright + QASE.io.
Как и первая статья эта будет написана под MacOS и на python версии 3.11.1. В качестве IDE выступает PyCharm Community Edition.

Вы когда-нибудь видели лендинги курсов по программированию? Наверняка да, ведь времена «мидлов за полгода» и «джунов за три месяца» отгремели совсем недавно. Страницы многих успешных эдтех-компаний здесь похожи. За обещаниями золотых гор на золотых песках удаленки мы вглядываемся в светлые лица преподавателей, и после reasons to believe нас встречает… программа обучения. Двух-, а то и трехуровневая простыня со всеми важными темами. И чем их больше, тем лучше: ведь на другой чаше весов уже поджидает стоимость курса.
Стремление показать товар лицом — это, конечно, похвально. Но есть у такой дотошности и обратный эффект: неуверенность в себе. Вчерашним «выпускникам филфака», к которым с натяжкой отношу себя и я, становится страшно. В этом посте я постараюсь всех нас ободрить и расскажу, как преодолел базовый курс Python.


Раз в месяц мы в Moscow Python Podcast собираемся и обсуждаем новые релизы, PEP, заинтересовавшие нас инструменты и статьи. Под катом — текстовая выжимка из обсуждения.

Подготовил шпаргалки для людей, использующих в своей работе python, sql, git, pandas numpy.

Открытое ПО сегодня привлекает повышенное внимание с разных сторон — разработки, бизнеса, технологий. Естественно, и его безопасность стоит отдельным вопросом, ведь злоумышленники также активно интересуются open source и создают угрозы для безопасной разработки. Доставка вредоносного кода через сторонние зависимости стала одним из опасных способов заражения.
В сложившейся ситуации, ввиду развития тренда, уже недостаточно просто искать вредоносный код: его нужно анализировать и прорабатывать возможные интеграции с другим ВПО, связи между контрольными серверами и т. п. Соответственно, к этому нужно привлекать вирусных аналитиков и специалистов по threat intelligence. Именно поэтому наша команда заинтересовалась поиском угроз в публичных репозиториях и разработкой системы для оперативного выявления вредоносов. В нее мы вложили весь наш опыт исследования ВПО, атрибуции — всего, с чем мы сталкивались в процессе изучения APT-группировок. В итоге мы создали систему PT PyAnalysis, которую можно встроить в процесс безопасной разработки.

Привет, Хабр! Меня зовут Никита Морозов, я Data Scientist в Сбере. Сегодня поговорим о том, как при помощи библиотеки ML Tuning осуществить подбор гиперпараметров модели GBTRegressor в PySpark. Зачем всё это нужно? Дело в том, что они используются в машинном обучении для управления процессом обучения модели. Соответственно, подбор оптимальных гиперпараметров — критически важный этап в построении ML-моделей. Это даёт возможность не только повысить точность, но и бороться с переобучением.
Привычный тюнинг параметров в Python для моделей машинного обучения представляет собой множество техник и способов, например GridSearch, RandomSearch, HyperOpt, Optuna. Но бывают случаи, когда предобработка данных занимает слишком много времени или же объём данных слишком велик, чтобы уместиться в оперативную память одной машины. Для этого на помощь приходит Spark. Подробности — под катом.

Руководство по созданию экономического бота для мессенджера Discord. + Установка необходимых компонентов.


Привет, Хабр!
Меня зовут Сергей Коньков, я Data Scientist и участник профессионального сообщества NTA. За последние 10 лет интерес к науке Network Science неимоверно возрос, что повлекло за собой закономерное развитие всевозможных инструментов для исследований в данной области. Одним из таких инструментов является python‑библиотека NetworkX, предназначенная для анализа графов или других сетевых структур. Этот пост будет направлен на объяснение и демонстрацию работы основных мер центральности, вычисляемых в графах.

Эта статья про мой путь до первой работы в DS (data science). Путь был не маленьким и был пройден за 2,5 года. Кого-то эта цифра отпугнет, если бы я знал это в начале, то меня бы тоже отпугнула, кто-то назовет меня неспособным дурачком (и отчасти будет прав), а для кого-то (я надеюсь) эта статья поможет сократить время обучения и пройти этот путь быстрее.