Как стать автором
Обновить
20
0
Tatiana Litovchenko @TatianaLi

Data scientist/Product Owner

Отправить сообщение

Полное практическое руководство по Docker: с нуля до кластера на AWS

Время на прочтение39 мин
Количество просмотров1.7M



Содержание



Вопросы и ответы


Что такое Докер?


Определение Докера в Википедии звучит так:


программное обеспечение для автоматизации развёртывания и управления приложениями в среде виртуализации на уровне операционной системы; позволяет «упаковать» приложение со всем его окружением и зависимостями в контейнер, а также предоставляет среду по управлению контейнерами.



Ого! Как много информации.

Читать дальше →
Всего голосов 125: ↑124 и ↓1+123
Комментарии44

Самостоятельное обучение стало проще с Notion AI. Онлайн школы скоро вымрут? Пример SQL курса

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров11K

Самостоятельное обучение стало проще с Notion AI. Онлайн школы скоро вымрут?Пример SQL курса.

Читать далее
Всего голосов 7: ↑5 и ↓2+4
Комментарии12

Рекомендательные системы: идеи, подходы, задачи

Время на прочтение11 мин
Количество просмотров51K


Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее привычные виды рекомендаций. В этой статье я расскажу о том, какие задачи решают рекомендательные системы, куда бежать и что гуглить.
Читать дальше →
Всего голосов 34: ↑33 и ↓1+32
Комментарии7

Отгадай слово: как мы создали игру с элементами машинного обучения и вышли в ноль за 2 месяца

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров12K

Как думает искусственный интеллект? Попробовать разобраться в его логике можно в игре от менторов AI Talent Hub, онлайн-магистратуры Napoleon IT и ИТМО, и студентов ИТМО «Отгадай слово». За два месяца в нее сыграли уже более 107 тысяч уникальных пользователей, а количество подписчиков одноименного телеграм-канала увеличилось до 5 000.
Что делает игру такой популярной, как проект окупился без затрат на продвижение и рекламы на сайте, а также почему при работе с ИИ не избежать ошибок? Рассказываем в статье. 

Читать далее
Всего голосов 33: ↑33 и ↓0+33
Комментарии23

Tfidfvectorizer, BERT, LASER: векторизация данных и кластерный анализ для улучшения рекомендательной системы

Время на прочтение9 мин
Количество просмотров12K

Мир онлайн-покупок становится всё привычнее, а значит, и обезличенных данных про каждого пользователя всё больше. Билайн ТВ использует для онлайн-кинотеатра рекомендательную систему на основе данных: она советует пользователю новый триллер, если он уже посмотрел пять похожих фильмов. 

Чтобы реализовать такую систему, компания CleverData (группа ЛАНИТ) сформировала эмбеддинги для пользователей Билайн ТВ. Ассоциация больших данных помогла сделать этот кейс возможным. 

В этой статье расскажем подробности этой задачи:

Читать далее
Всего голосов 24: ↑24 и ↓0+24
Комментарии0

FAANG rus version: ВОТВАСЯ или ЯВОВА — ТОП российских IT — компаний

Время на прочтение2 мин
Количество просмотров50K

Есть FAANG, но почему нет популярной аббревиатуры для российских IT компаний? Например, ЯВОВА...

Читать далее
Всего голосов 36: ↑20 и ↓16+12
Комментарии92

Геоаналитика с помощью Python и открытых данных: пошаговое руководство

Время на прочтение11 мин
Количество просмотров47K

Геоаналитика с помощью Python: GeoPandas, folium, Uber H3, OSM + примеры как можно определять лучшие локации для поиска помещений под открытие кофейни (и не только).

Читать далее
Всего голосов 29: ↑29 и ↓0+29
Комментарии39

Полезный обзор. 28 книг, которые повлияли на мое мышление, вдохновили или сделали лучше

Время на прочтение7 мин
Количество просмотров154K


Я не люблю читать книжные рейтинги по двум причинам. Во-первых, чаще всего они представляют собой список книг, отобранных неведомым автором по неведомым критериям. Во-вторых, описания книг больше напоминают рекламные тексты издательств, которым сложно верить.

Из-за этого большинство подобных материалов мало полезны, несмотря на то, что могут содержать толковые книги. Мне давно хотелось написать полезный обзор, который не станет навязывать определенные материалы, а позволит читателю выбрать наиболее подходящие.
Читать дальше →
Всего голосов 62: ↑55 и ↓7+48
Комментарии79

Открытый курс машинного обучения. Тема 7. Обучение без учителя: PCA и кластеризация

Время на прочтение19 мин
Количество просмотров205K

Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения!


Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →
Всего голосов 53: ↑52 и ↓1+51
Комментарии8

Открытый курс машинного обучения. Тема 6. Построение и отбор признаков

Время на прочтение24 мин
Количество просмотров188K

Сообщество Open Data Science приветствует участников курса!


В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.



Читать дальше →
Всего голосов 52: ↑52 и ↓0+52
Комментарии28

Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес

Время на прочтение28 мин
Количество просмотров274K

Пятую статью курса мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию и таким образом улучшить точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


Читать дальше →
Всего голосов 56: ↑55 и ↓1+54
Комментарии31

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии

Время на прочтение30 мин
Количество просмотров541K

Всем привет!


Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных. Ключевое отличие нашей подачи материала от аналогичной в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).


Пример такой задачи – это соревнование Kaggle Inclass по идентификации пользователя в Интернете по его последовательности переходов по сайтам.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Все материалы доступны на GitHub.
А вот видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017). В ней, в частности, рассмотрены два бенчмарка соревнования, полученные с помощью логистической регрессии.

Читать дальше →
Всего голосов 56: ↑53 и ↓3+50
Комментарии42

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей

Время на прочтение33 мин
Количество просмотров517K

Привет всем, кто проходит курс машинного обучения на Хабре!


В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.

Читать дальше →
Всего голосов 63: ↑62 и ↓1+61
Комментарии50

Операция Vk 2.0. Внесён законопроект о новостных агрегаторах. «Яндекс.Новости» закроют, если сервис не сменит владельца

Время на прочтение5 мин
Количество просмотров56K
Вчера в Госдуму поступил законопроект «О внесении изменения в статью 104 Федерального закона „Об информации, информационных технологиях и о защите информации”».

Законопроект запрещает иностранцам и лицам с иностранным участием владеть новостными агрегаторами. А те юрлица, где иностранцы косвенно контролируют более 20% акций или долей, не должны контролировать, управлять либо как-либо влиять на управление новостным агрегатором.

Если законопроект будет принят, то сервису «Яндекс.Новости» грозит запрет на работу в России. Единственный выход — сменить владельца. Например, перейти под государственное управление.

На фотографии: Аркадий Волож, основатель и основной акционер «Яндекса», имеет гражданство России и Мальты
Читать дальше →
Всего голосов 90: ↑80 и ↓10+70
Комментарии453

Может ли искусственный интеллект оставить букмекеров без работы?

Время на прочтение5 мин
Количество просмотров35K
«Победа искусственного интеллекта над футбольными экспертами» – таким мог стать заголовок этой статьи про результаты футбольного соревнования. Мог бы, но, увы, не стал.

Во время Чемпионата мира по футболу у нас в компании "НОРБИТ" проходил конкурс на лучший прогноз матчей по футболу. Я слишком поверхностно разбираюсь в футболе, чтобы на что-то претендовать, но желание принять участие в конкурсе все-таки победило мою лень. Под катом – история о том, как благодаря машинному обучению мне удалось добиться неплохих результатов среди знатоков футбольных команд. Правда, сорвать куш мне не удалось, зато открыл для себя новый увлекательный мир Data Science.

Читать дальше →
Всего голосов 50: ↑50 и ↓0+50
Комментарии60

Мета-кластеризация с минимизацией ошибки, и почему я думаю, что так работает мозг

Время на прочтение8 мин
Количество просмотров7.5K
Привет всем! Хочу поделиться с Вами своей идеей машинного обучения.

Большие достижения в области машинного обучения, впечатляют. Сверточные сети и LSTM это круто. Но почти все современные технологии основаны на обратном распространении ошибки. На основе этого метода вряд ли получится построить думающую машину. Нейронные сети получаются чем-то вроде замороженного мозга, обученного раз и навсегда, неспособным меняться размышлять.

Я подумал, почему бы не попробовать создать что-то похожее на живой мозг. Этакий реинжиниринг. Поскольку у всех животных, несмотря на различия в интеллекте, мозг состоит из примерно одинаковых нейронов, в основе его работы должен лежать какой-то базовый принцип.
Читать дальше →
Всего голосов 33: ↑27 и ↓6+21
Комментарии21

Некоторые репозитории в помощь изучающим и преподающим Python и машинное обучение

Время на прочтение13 мин
Количество просмотров64K


Привет сообществу!

Я Юрий Кашницкий, раньше делал здесь обзор некоторых MOOC по компьютерным наукам и искал «выбросы» среди моделей Playboy.

Сейчас я преподаю Python и машинное обучение на факультете компьютерных наук НИУ ВШЭ и в онлайн-курсе сообщества по анализу данных MLClass, а также машинное обучение и анализ больших данных в школе данных одного из российских телеком-операторов.

Почему бы воскресным вечером не поделиться с сообществом материалами по Python и обзором репозиториев по машинному обучению… В первой части будет описание репозитория GitHub с тетрадками IPython по программированию на языке Python. Во второй — пример материала курса «Машинное обучение с помощью Python». В третьей части покажу один из трюков, применяемый участниками соревнований Kaggle, конкретно, Станиславом Семеновым (4 место в текущем мировом рейтинге Kaggle). Наконец, сделаю обзор попавшихся мне классных репозиториев GitHub по программированию, анализу данных и машинному обучению на Python.

Читать дальше →
Всего голосов 26: ↑24 и ↓2+22
Комментарии11

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров1.1M


Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.

Читать дальше →
Всего голосов 44: ↑43 и ↓1+42
Комментарии61

Информация

В рейтинге
Не участвует
Откуда
Краснодар, Краснодарский край, Россия
Зарегистрирована
Активность