Как стать автором
Обновить
-1
0
Глеб @snackTate

Пользователь

Отправить сообщение

Индуктивная статистика: доверительные интервалы, предельные ошибки, размер выборки и проверка гипотез

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров14K

Одной из самых распространённых задач аналитики является формирование суждений о большой совокупности (например, о миллионах пользователей приложения), опираясь на данные лишь небольшой части этой совокупности - выборке. Можно ли сделать вывод о миллионной аудитории крупного мобильного приложения, собрав данные 100 пользователей? Или стоит собрать данные о 1000 пользователях? Какую вероятность ошибиться при анализе мы можем допустить: 5% или 1%? Относятся ли две выборки к одной совокупности, или между ними есть ощутимая значимая разница и они относятся к разным совокупностям? Точность прогноза и вероятность ошибки при ответе на эти и другие вопросы поддаются вполне конкретным расчётам и могут корректироваться в зависимости от потребностей продукта и бизнеса на этапе планирования и подготовки эксперимента. Рассмотрим подробнее, как параметры эксперимента и статистические критерии оказывают влияние на результаты анализа и выводы обо всей совокупности, а для этого смоделируем тысячу A/A, A/B и A/B/C/D тестов.

Читать далее

Pandas: от хаоса к красоте кода

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров16K

Работа с pandas.DataFrame может превратиться в неловкую кучу старого (не очень) доброго спагетти-кода. Я и мои коллеги часто используем эту библиотеку, и хотя мы стараемся придерживаться хороших практик программирования, иногда мы все равно мешаем друг другу, создавая запутанный код.

Я собрала несколько советов и подводных камней, которых следует избегать, чтобы сделать код на pandas чистым. Надеюсь, вам они тоже будут полезны. Также я буду ссылаться на классическую книгу Роберта Мартина «Чистый код: создание, анализ и рефакторинг».

Погнали!

Анализ навыков data-специализаций в вакансиях HH.ru

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров6.3K

Всем привет!

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Читать далее

AutoML на практике — как делать автоматизацию, а не её иллюзию

Уровень сложностиСредний
Время на прочтение15 мин
Количество просмотров13K

Привет, Хабр! Меня зовут Алексей Рязанцев, я Junior Data Scientist в Лаборатории Машинного обучения Альфа-Банка. Свой путь в Лаборатории я начал со стажировки летом-осенью 2023-го года, на которой для меня была интересная задача — разработать с нуля собственный AutoML в Альфа-Банке

Когда количество ML-моделей в компании исчисляется сотнями, процессы десятками, а фичи тысячами, вопрос «а нужен ли нам AutoML?» уже не стоит. Стоит другой вопрос - как сделать AutoML так, чтобы он был действительно полезен и им реально хотелось пользоваться? 

В этом посте я подробно освещу путь создания нашего AutoML-сервиса: расскажу обо всех препятствиях, которые мы преодолели, и поделюсь инсайтами, полученными в ходе работы. Вместе мы пройдем полный путь практического AutoML - начиная от его первоначальной идеи и мотивации, и заканчивая текущими успехами и планами на будущее.

Читать далее

Идеальное резюме, разговор с IT-рекрутером

Уровень сложностиПростой
Время на прочтение14 мин
Количество просмотров16K

Очередная статья в помощь начинающим разработчикам. На этот раз я писала статью совместно с Анной Ветровой (на данный момент она IT Recruitment Team Lead в международном кадровом агентстве), изначально я нашла ее для написания поста о идеальном резюме в свой канал, но мы на столько увлеклись разговором и собрали такое количество материала, что хватило на целую статью (а то и книгу) и целых две недели только ушло на ее редактирование. Статья вышла в виде диалога, который у нас получился, будет полезна как начинающим, так и опытным разработчикам.

Читать далее

Docker для новичков — #1 Что такое контейнер, image, DockerHub?

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров26K

В этой статье я расскажу о том, что такое Docker, Docker Desktop и как этим пользоваться! Два способа создания image, значения вкладок Docker Desktop

Читать далее

Кратко про алгоритм обучения Q-learning и как он реализуется в Python для новичков

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров7.4K

Привет, Хабр!

Q-learning — это алгоритм обучения с подкреплением, который позволяет агенту оптимизировать свою стратегию действий в динамичной среде, стремясь максимизировать сумму будущих наград. Агент исследует среду, принимая решения, основанные на предыдущем опыте, а не на предварительной модели мира.

В этой статье мы и рассмотрим этот алгоритм.

Читать далее

Линейная регрессия. Основная идея, модификации и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение16 мин
Количество просмотров35K

В машинном и глубоком обучении линейная регрессия занимает особое место, являясь не просто статистическим инструментом, но а также фундаментальным компонентом для многих более сложных концепций. В данной статье рассмотрен не только принцип работы линейной регрессии с реализацией с нуля на Python, но а также описаны её модификации и проведён небольшой сравнительный анализ основных методов регуляризации. Помимо этого, в конце указаны дополнительные источники для более глубокого ознакомления.

Читать далее

Это мы юзаем: библиотека Optuna в Python для оптимизации гиперпараметров

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров11K

Привет, Хабр!

Гиперпараметры — это параметры, которые не учатся в процессе обучения модели. Они задаются заранее. От выбора гиперпараметров напрямую зависит качество и эффективность модели, а их оптимизация может улучшить результаты предсказаний.

Традиционный подход к оптимизации гиперпараметров включает в себя grid search и random search, иногда они могут быть неэффективными и времязатратными, особенно когда пространство гиперпараметров велико.

Когда я впервые столкнулся с необходимостью настроить сотни параметров в своей нейросети, задача показалась мне Сизифовым трудом. Каждый параметр мог значительно изменить результат, и пространство поиска казалось бесконечным. И немного просидев на стековерфлой я нашел либу Optuna, которая позоволила оптимизировать этот процесс.

Optuna решает проблему оптимизации гиперпараметров, предоставляя легковесный фреймворк для автоматизации поиска оптимальных гиперпараметров. Она использует алгоритмы, такие как TPE, CMA-ES, и даже поддерживает пользовательские алгоритмы.

Optuna полностью написана на Python и имеет мало зависимостей. В этой статье рассмотрим её основной функционал.

Читать далее

Управление цветами в Seaborn: как визуализировать данные красиво

Уровень сложностиСредний
Время на прочтение20 мин
Количество просмотров13K

Привет, Хабр. В этой статье я расскажу про своё видение работы с цветом при визуализации графиков. Буду показывать все на примерах — уверен, они вам понравятся.

Я покажу не только картинки было-стало, но и приведу примеры кода, а также объясню логику принятия решений: как использовать ту или иную палитру в конкретной задаче. И что самое главное, дам пошаговые советы, как сделать график логичнее и понятнее для заказчиков.

Меня зовут Саша, сейчас я работаю в Lamoda Tech старшим бизнес/дата-аналитиком. До этого я несколько лет был специалистом по данным в другой компании и регулярно представлял совету директоров анализ и прогноз физических и бизнес-показателей. Умение донести результаты исследования до заказчика, особенно если он не погружен в работу с данными — это важный аспект моей профессии. Надеюсь, моя статья с этим немного поможет.

Читать далее

Домашняя виртуальная лаборатория. Готовим собственный сервер виртуализации для обучения. 2. Выбираем сервер

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров17K

В предыдущем уроке мы проговорили для чего может понадобиться домашняя лаборатория и самое главное — кому она нужна. Допустим вы решили, что вам она нужна. Тут же встанет вопрос: «На чем строить эту виртуальную лабораторию?». Вопрос не такой простой, как может показаться на первый взгляд. Как минимум здесь два важных пункта, которые очень тесно связаны друг с другом:

Читать далее

Самый лучший в мире курс по Машинному обучению — Алгоритмы Машинного обучения с нуля

Время на прочтение1 мин
Количество просмотров26K

Краткий обзор курса, который я недавно закончил пилить на степике. Курс хардкорный :) В нем необходимо с нуля писать алгоритмы машинного. Наверное это один из лучший способов досконально разобраться в алгоритме.

Курс на Степике: https://stepik.org/a/68260

Читать далее

Линейный дискриминантный анализ (LDA). Принцип работы и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение7 мин
Количество просмотров12K

Линейный дискриминантный анализ (Linear Discriminant Analysis или LDA) — алгоритм классификации и понижения размерности, позволяющий производить разделение классов наилучшим образом. Основная идея LDA заключается в предположении о многомерном нормальном распределении признаков внутри классов и поиске их линейного преобразования, которое максимизирует межклассовую дисперсию и минимизирует внутриклассовую. Другими словами, объекты разных классов должны иметь нормальное распределение и располагаться как можно дальше друг от друга, а одного класса — как можно ближе.

Читать далее

Общее описание и реализация Word2Vec с помощью PyTorch

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров10K

В данной статье даётся общее описание векторного представления вложений слов - модель word2vec. Также рассматривается пример реализации модели word2vec с использованием библиотеки PyTorch. Приведена реализация как архитектуры skip-gram так и CBOW.

Читать далее

Превратите свой пет-проект из хобби в карьеру

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров26K

Привет, Хабр!

Меня зовут Данил Картушов, в этом посте я расскажу, почему и как именно pet-project'ы могут стать ключом к вашей карьере.

Надеюсь, что после этого поста ты сможешь раскрыть свой потенциал к обучению и по-новому взглянуть на процесс обучения.

Начнем!

Материалы для подготовки к собеседованию на позицию Data Scientist. Часть 2: Классическое машинное обучение

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров14K

Привет! Меня зовут Артем. Я работаю Data Scientist'ом в компании МегаФон (платформа для безопасной монетизации данных OneFactor).

В предыдущей статье я поделился материалами для подготовки к одному из самых волнительных (для многих) этапов - Live Coding.

В этой статье рассмотрим материалы, которые можно использовать для подготовки к секции по классическому машинному обучению.

Читать далее

Краткий обзор токенизаторов: что это такое и зачем это надо?

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров9.7K

Представьте себе, что вы читаете книгу и хотите найти все места, где упоминается слово «кот». Не знаю, зачем вам это, но пока остановимся на том, что вы это хотите. Вот очень надо.

Так как это сделать?

Вы можете просто пролистать книгу и прочитать ее с начала до конца, буквально вручную находя всех котиков, но… Это может занять много времени и усилий. Гораздо проще будет воспользоваться индексом в конце книги, где перечислены все места, где упоминается слово «кот». Проблема в том, что в обычной печатной книге такого нет, а вот если вы читаете электронку — да, вполне. Можно воспользоваться поиском по слову.

Но это вы так можете, а вот компьютеры — нет.

Компьютеры не могут просто прочитать текст и понять, что он означает. Они нуждаются в помощи токенизаторов, которые преобразуют текст в набор токенов, или отдельных единиц информации, которые можно анализировать и обрабатывать.

Токенизация — это первый шаг в обработке текстовых данных. Без токенизации компьютеры не смогли бы понимать текст и находить в нем полезную информацию. Токенизаторы помогают преобразовать текст в данные, которые можно анализировать и использовать для решения различных задач, таких как классификация текстов, распознавание речи, машинный перевод и многие другие.

Токенизаторы, подобно электронным поисковым системам для текста, помогают компьютерам эффективно найти и организовать нужную информацию, так же как электронные индексы в электронных книгах облегчают поиск конкретных фраз. Без них компьютерам было бы гораздо сложнее «понимать» и анализировать текстовые данные.

Читать далее

Метод главных компонент (PCA). Принцип работы и реализация с нуля на Python

Уровень сложностиСложный
Время на прочтение8 мин
Количество просмотров24K

Метод главных компонент (Principal Component Analysis или же PCA) — алгоритм обучения без учителя, используемый для понижения размерности и выявления наиболее информативных признаков в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной.

Такие вектора называются главными компонентами и они определяют направления наибольшей изменчивости (информативности) данных. Альтернативно суть PCA можно определить как линейное проецирование, минимизирующее среднеквадратичное расстояние между исходными точками и их проекциями.

Читать далее

Кластеризация в ML: от теоретических основ популярных алгоритмов к их реализации с нуля на Python

Уровень сложностиСложный
Время на прочтение34 мин
Количество просмотров40K

Кластеризация — это набор методов без учителя для группировки данных по определённым критериям в так называемые кластеры, что позволяет выявлять сходства и различия между объектами, а также упрощать их анализ и визуализацию. Из-за частичного сходства в постановке задач с классификацией кластеризацию ещё называют unsupervised classification.

В данной статье описан не только принцип работы популярных алгоритмов кластеризации от простых к более продвинутым, но а также представлены их упрощённые реализации с нуля на Python, отражающие основную идею. Помимо этого, в конце каждого раздела указаны дополнительные источники для более глубокого ознакомления.

Читать далее

NLP для поиска грамматических ошибок

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров2.3K

Привет, Хабр!

Сегодня с вами участник профессионального сообщества NTA Журавлев Сергей.

В 2017 году на свет вышла статья разработчиков Google под названием «Attention is All You Need». В ней впервые была предложена идея трансформеров — моделей машинного обучения, ключевой особенностью которых было использование так называемых «слоев внимания», определяющих, какие слова и в какой степени важны для формирования контекста предложения. Публикация стала началом активного развития и продвижения моделей машинного обучения на описанной архитектуре.

Читать далее

Информация

В рейтинге
Не участвует
Откуда
Ставрополь, Ставропольский край, Россия
Дата рождения
Зарегистрирован
Активность