Больше примеров — в конце поста
В последние годы большие языковые модели на архитектуре трансформеров стали вершиной развития нейросетей в задачах NLP. С каждым месяцем они становятся всё больше и сложнее. Чтобы обучить подобные модели, уже сейчас требуются миллионы долларов, лучшие специалисты и годы разработки. В результате доступ к современным технологиям остался лишь у крупнейших IT-компаний. При этом у исследователей и разработчиков со всего мира есть потребность в доступе к таким решениям. Без новых исследований развитие технологий неизбежно снизит темпы. Единственный способ избежать этого — делиться с сообществом своими наработками.
Год назад мы впервые
рассказали Хабру о семействе языковых моделей YaLM и их применении в Алисе и Поиске. Сегодня мы выложили в свободный доступ нашу самую большую модель YaLM на 100 млрд параметров. Она обучалась 65 дней на 1,7 ТБ текстов из интернета, книг и множества других источников с помощью 800 видеокарт A100. Модель и дополнительные материалы
опубликованы на Гитхабе под лицензией Apache 2.0, которая допускает применение как в исследовательских, так и в коммерческих проектах. Сейчас это самая большая в мире GPT-подобная нейросеть в свободном доступе как для английского, так и для русского языков.
В этой статье мы поделимся не только моделью, но и нашим опытом её обучения. Может показаться, что если у вас уже есть суперкомпьютер, то с обучением больших моделей никаких проблем не возникнет. К сожалению, это заблуждение. Под катом мы расскажем о том, как смогли обучить языковую модель такого размера. Вы узнаете, как удалось добиться стабильности обучения и при этом ускорить его в два раза. Кстати, многое из того, что будет описано ниже, может быть полезно при обучении нейросетей любого размера.