Привет! Меня зовут Мария Шпак, я лидер команды collection стрима моделирования розничного бизнеса в Департаменте анализа данных и моделирования банка ВТБ. Наша команда занимается разработкой моделей машинного обучения для различных процессов, в совокупности служащих для финансового урегулирования. Основной заказчик этих моделей – соответствующий департамент банка, целью которого является помощь клиентам, допустившим просрочку платежа или находящимся в графике, но имеющим риск просрочки (Pre-Collection). Наши коллеги предлагают клиентам различные инструменты урегулирования этой проблемы и в большинстве случаев добиваются скорейшего возврата клиента в график платежей и в статус добросовестного заемщика. Оптимизация стратегий финансового урегулирования предполагает учёт разных параметров ситуации клиента: причины возникновения просрочки, степени серьезности возникших у него проблем, а также наиболее удобных и эффективных способов установить с ним контакт.

Big Data *
Большие данные и всё о них
История исследования и анализа информации. Архитектура Data Mesh: концептуальные основы

С возникновением первых вычислительных машин предприятия осознали потребность в обработке и анализе информации.
В 1980-е годы они приступили к формированию информационных хранилищ, основанных на реляционных базах данных, которые стали ключевым инструментом для принятия взвешенных решений.
Но по мере того как компании накапливали всё больше разнородных сведений, недостатки реляционных баз данных становились всё более явными.
С началом нового тысячелетия мы вступили в эпоху больших данных. Специалисты разработали передовые инструменты для обработки огромных массивов разнообразных данных, которые генерируются с невероятной скоростью.
Для работы с данными и их структурой используются технологии, которые позволяют эффективно обрабатывать и анализировать большие объёмы информации.
Тем не менее, при внедрении таких аналитических инструментов компании всё ещё сталкивались с определёнными трудностями.
Архитектура сохраняла свою целостность, и одна команда специалистов занималась созданием платформы и интеграцией данных.
В крупных компаниях такой метод сразу же вызывал формирование значительных очередей за услугами по интеграции и аналитическими инструментами.
В данном контексте централизация оказалась ахиллесовой пятой крупных корпораций.
В крупных организациях попытка сосредоточить все усилия по интеграции данных в одной группе может оказаться неэффективной. Зачастую источники информации находятся в разных местах, не имея единого центра управления, что затрудняет поиск ответственных лиц. Такой подход не приводит к нужным результатам.
Методы расширения атрибутивного состава таблиц БД

Представим себе картину из идеального мира данных, в котором всё стабильно, изменений нет и на горизонте не предвидятся. Аналитик полностью согласовал с заказчиком требования к витрине, спроектировал решение и передал в разработку. Разработчики внедрили витрину в продуктивный контур, пользователи счастливы, всё работает корректно — сопровождение разработчиков и аналитиков не требуется. Представили?
Но, как мы знаем, «IT» и «изменения» — синонимы, поэтому в идеальном мире, как гром среди ясного неба, появляются новые требования: разработать инструмент для регулярного добавления в витрину данных новых атрибутов, на текущий момент в неизвестном количестве.
Сразу отмечу, что решения и оценки, о которых пойдёт речь, подбирались для работы с большими данными на стеке технологий Apache Hadoop, где для обработки данных использовали фреймворк Apache Spark, СУБД — Apache Hive для анализа данных, оркестратор — Airflow, данные хранятся в колоночном формате Parquet.
Со скоростью кометы: ускоряем Spark без переписывания кода

Привет, Хабр! Меня зовут Лев Маковеев. Я младший инженер по обработке данных в компании «Криптонит». В этой статье хочу поделиться с вами результатами небольшого исследования, в ходе которого мы протестировали ускоритель запросов Apache DataFusion Comet и пришли к довольно впечатляющим результатам. Забегая вперёд, отмечу, что в отдельных тестах ускорение было более чем десятикратным!
Тайные сообщества товаров: обзор графовых методов

Привет, Хабр! На связи команда матчинга и группировки из ecom.tech. Наша команда решает задачи поиска, группировки и сортировки товаров, с помощью алгоритмов машинного обучения. Например, такие алгоритмы объединяют товары от разных продавцов в одной карточке, что дает покупателям возможность сэкономить время и деньги.
Сегодня мы расскажем, как исследовали алгоритмы community detection для группировки товаров, с какими проблемами столкнулись и при чём тут матчинг. Статья будет полезна всем, кто работает с большими объемами данных и ищет способы оптимизировать операции с этими данными. Поехали!
Аналитика по скидке: когда клиенты готовы платить только впечатлениями

Аналитика по скидке: когда клиенты готовы платить только впечатлениями
Если данные новая нефть, то почему за нее не готовы платить?
Как измерить ценность внедрения аналитики?
Текстовая трансляция ArenaDAY 2025

Хабр, привет! И добро пожаловать на прямую текстовую трансляцию конференции ArenaDAY 2025! Да, сегодня на официальном сайте идёт прямая видеотрансляция мероприятия, но мы решили провести ещё и текстовую — специально для тех, кто не может смотреть онлайн. Следите за обновлениями: мы оперативно публикуем самые интересные моменты, главные тезисы выступлений и цитаты спикеров!
Офлайн А/Б тесты в ресторанах фастфуда. Часть 2: Анализ и интерпретация результатов A/B-тестов

В первой части «Планирование и верификация офлайн A/B-тестов» мы разобрали, как подготовить данные и убедиться, что группы для эксперимента сопоставимы. Мы провели тщательную верификацию: сравнили метрики, проверили распределения и постарались исключить искажения ещё до старта.
Теперь — самое важное.
Во второй части речь пойдёт о том, как анализировать полученные данные и не ошибиться с выводами. Мы обсудим методы, позволяющие скорректировать влияние внешних факторов, научимся контролировать ошибки первого и второго рода, выбирать подходящий статистический критерий и оценивать надёжность результатов.
Если первая часть была про чистоту эксперимента, то вторая — про силу аргументов.
Офлайн А/Б тесты в ресторанах фастфуда. Часть 1: Планирование и верификация офлайн A/B-тестов

Привет! Меня зовут Елена Малая, я занимаюсь офлайн A/B-тестами в Бургер Кинг Россия.
В последнее время всё больше пишут про оффлайн-эксперименты — и это здорово. Но мне часто не хватало материалов, приближённых к реальности: когда данных мало, шум высокий, а каждый тест — как разведоперация.
Эта статья — о том, как я выстраивала методологию A/B-тестирования в условиях оффлайн-ритейла. Она для тех, кто работает с данными не в идеальном вакууме, а на земле — в ресторанах, ритейле, логистике.
Здесь не будет учебных формул — только рабочие подходы, предостережения и лайфхаки, собранные через тесты, ошибки и (маленькие) победы. Если вы, как и я, когда-то поняли, что "по книжке" оно не взлетает — welcome.
Оцени, прежде чем доверять: как сделать AI-агента полезным

Часто недооцененным аспектом разработки AI-агентов остаётся этап оценки. Хотя создать proof of concept относительно просто, поиск оптимальной конфигурации для балансировки стоимости, скорости, релевантности и других параметров требует значительных временных затрат. Инструменты и фреймворки для оценки являются ключевыми элементами этой стадии оптимизации.
Свайп, дофамин, иллюзия выбора: как сервисы превратили любовь в цифровую рулетку

Современные сервисы знакомств оптимизированы не для создания пар, а для монетизации одиночества через манипуляцию дофаминовыми циклами. Конфликт интересов между пользователями и платформами усугубляется архаичными социальными стереотипами и отсутствием платформ использующих современных технологии для поиска (хотя вроде и есть ML, скоринг, кластеризация..) И в таргетинге работают уже в весь рост. Там это выгодно. А выгодно ли сервисам?
Как в Lamoda Tech меняли главную страницу, создавали облако тегов и поднимали метрики поиска. Материалы с DS Meetup

Публикуем материалы с митапа по Data Science, который прошел 15 апреля.
В офисе Lamoda Tech мы делились свежими кейсами о том, как использовать большие данные и сделать шопинг ещё более приятным и улучшить UX. Рассказали, как поднимаем метрики поиска по самым нестандартным запросам, персонализируем рекомендации на примере главной страницы, а также создаём облако тегов и разметку отзывов для более точного выбора товаров.
Потоковая фильтрация CommonCrawl с Apache Spark для обучения языковых моделей
Для обработки Common Crawl на терабайтных объёмах широко используются архитектуры обработки данных, построенные на фреймворках вроде Apache Spark. Благодаря распределённой обработке данных и структурированному стримингу Spark позволяет разработчикам создавать масштабируемые пайплайны, применять логику фильтрации и формировать итоговые очищенные корпусы для обучения. Эта статья перевод моей статьи на medium.com, я хотел рассматреть, как на практике формируются обучающие наборы из Common Crawl (например, в проектах C4, CCNet, OSCAR, GPT-3, BLOOM, Falcon и др.), а затем показать пример Spark Streaming-приложения, который я написал и опубликовал в GitHub. Мы также приводим пример подхода, реализованного в DeepSeek, для фильтрации математического контента — узкоспециализированная задача, которая способна дать существенный прирост в качестве моделей.
Ближайшие события
Self-Service BI: как сделать, чтобы он полетел

«Спасение утопающих — дело рук самих утопающих». Иногда это звучит не так уж и плохо.
Привет, Хабр! Меня зовут Юлий Гольдберг, работаю в GlowByte (занимаюсь платформами данных, BI, аналитическими решениями больше 20 лет). Сегодня хочу поделиться некоторыми наблюдениями о том, про что нужно не забывать, чтобы Self‑Service BI стал реальным драйвером развития корпоративной культуры работы с данными, а не остался благим пожеланием.
Что такое Ansible и как применяется в DWH-проектах? Сравнение Ansible с Puppet, Chef, SaltStack

В статье рассказываем, что такое Ansible и как инструмент может применяться в проектах DWH: от автоматического развертывания и настройки компонентов до восстановления после сбоев и централизованного управления параметрами.
Сравниваем Ansible с другими инструментами для автоматизации управления инфраструктурой: Puppet, Chef, SaltStack.
Ускорить Pandas в 60 раз: проверяем лайфхаки из интернета на реальном проекте и обкладываемся бенчмарками

Привет! Если после заголовка вы решили, что это очередная статья в стиле «Топ-10 способов ускорить Pandas», то не торопитесь с выводами. Вместо топов и подборок предлагаю взглянуть на бенчмарки скорости и потребления памяти в зависимости от характеристик датафрейма и убедиться, что часть советов из статей по ускорению могут оказаться даже вредными. Разберём, какой из способов ускорения нужно пробовать в разных ситуациях, как это зависит от размера датафрейма и как ведёт себя в реальном проекте.
Анализ данных: от EDA до Tinder-битвы графиков

Всем привет! Меня зовут Максим Шаланкин, и я веду несколько образовательных блоков в нашей школе аналитиков данных в МТС. Сегодня я хочу рассказать, как мы организовали необычное занятие по анализу данных: в нем студенты соревновались за звание лучшего в игре, напоминающей Tinder, но для графиков предварительного анализа (EDA). Эта активность не только помогла освоить ключевые навыки визуализации, но и сделала процесс обучения увлекательным и запоминающимся, демонстрируя практическую значимость качественного анализа данных.
В этом материале я расскажу, как мы вообще обучаем EDA, какие нюансы есть в процессе и как мы делаем его интересным с помощью игры. История и графики победителей под катом.
Цифровой двойник: не просто копия, а твой персональный баг-репорт реального мира

Пока одни обсуждают метавселенные и ИИ, инженеры и разработчики уже строят цифровых двойников — виртуальных клонов реальных объектов, систем и людей. Эта статья — попытка разобраться без прикрас и с примерами, как устроена такая технология, какие инструменты сейчас в ходу, с чем сталкиваются разработчики, и где всё это реально применяется — от предсказания отказов турбин до мониторинга состояния коров в Новой Зеландии.
YTsaurus — два года в опенсорсе: чего мы достигли и куда движемся

20 марта мы провели митап для пользователей YTsaurus — главной платформы для хранения и обработки больших данных в Яндексе от разработчиков из Yandex Infrastructure, которая уже успела зарекомендовать себя за пределами компании.
Этот текст во многом основан на моем выступлении на митапе: я кратко расскажу, чего мы достигли, какие улучшения внесли и что ждёт пользователей в ближайшем будущем.
Apache Spark Catalyst: секреты оптимизатора запросов, который должен знать каждый Data Engineer

Привет Хабр! Меня зовут Кучеров Андрей и я Lead Data Engineer с более чем 7-летним опытом в области распределенной обработки данных. Я работал над оптимизацией высоконагруженных Spark-приложений в X5 Retail Group и билайн, где мы обрабатывали петабайтные объемы данных. Регулярно сталкиваясь с производительностью запросов, я убедился, что понимание работы Catalyst — необходимый навык для каждого Data Engineer, работающего со Spark.
Вклад авторов
moat 815.0Aleron75 528.0Syurmakov 524.4alexanderkuk 501.03Dvideo 490.0i_shutov 488.0m31 483.2shukshinivan 460.0s_valuev 446.0o6CuFl2Q 445.0