Обновить
609.75

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга

На площадке Hugging Face вышли 12 бесплатных курсов по самым топовым направлениям ИИ:

  • AI Agents: база по самой горячей теме года — учимся делать автономных агентов.

  • LLM Course: как работают «мозги» современных чат-ботов и библиотек типа Transformers.

  • Smol-course: если мало времени, это самый быстрый способ разобраться в тонкой настройке (fine-tuning) моделей.

  • MCP Course: свежак, созданный вместе с Anthropic — учимся подключать ИИ к любым данным.

  • Deep RL: всё про обучение с подкреплением (то, на чем гоняют роботы и OpenAI o1).

  • ML для игр: как встроить нейронки прямо в геймдев.

  • Robotics: путь от классических железяк до роботов на нейронках.

  • Deep RL: всё про глубокое обучение с подкреплением (привет, OpenAI o1).

  • Computer Vision: учим ИИ видеть и понимать изображения.

  • Audio Course: работа со звуком и голосом через Transformers.

  • Diffusion Course: полный гайд по генерации картинок и работе с библиотекой Diffusers.

  • Open-Source AI Cookbook: отдельная имба — сборник готовых рецептов и кода для решения любых ИИ-задач.

Теги:
+2
Комментарии0

ИИ всегда радикально тупее специалиста и по любой теме не более чем вводитель в заблуждения.

Мое пользование ИИ разных производителей привело за пару лет к некоему выводу.
Я являюсь профессионалом в нескольких предметных областях.
И вот во всех них что несет ИИ кажется мне глубокой чушью. Рассуждения малограмотного бездаря по теме в которой он вовсе не в курсе но очень хочет поговорить.
А вот в тех областях в которых я мало что понимаю ИИ выглядит вполне таким грамотным и разумным.
Но со всей очевидностью я понимаю, что в этих мало знакомых мне областях есть свои специалисты и уже они когда обращаются к ИИ видят в них откровенных дураков и лживых бездарей.
А в итоге если сложить всех специалистов и дать им оценить ответы ИИ то выясняется, что все эти модели создают лживых и малограмотных дилетантов, пригодных только для того чтобы морочить голову по темам в которых пользователь не разбирается.

Теги:
+2
Комментарии14

OpenAI теперь позволяет пользователям напрямую регулировать уровень энтузиазма ChatGPT. Пользователи могут настраивать теплоту, энтузиазм и использование эмодзи чат-бота. Эти параметры (а также аналогичные настройки использования заголовков и списков в ChatGPT) теперь отображаются в меню «Персонализация» и могут быть установлены на «Больше», «Меньше» или «По умолчанию». Они позволяют пользователям дополнительно настраивать тон ChatGPT, помимо существующей возможности установить «базовый стиль и тон» — включая профессиональный, откровенный и необычный тона, которые OpenAI добавила в ноябре.

Тон ChatGPT был постоянной проблемой в этом году: OpenAI отменила одно обновление из-за того, что оно было «слишком льстивым», а затем скорректировала GPT-5, сделав его «теплее и дружелюбнее» после жалоб некоторых пользователей на то, что новая модель стала более холодной и менее дружелюбной.

Теги:
+1
Комментарии1

Превращаем ChatGPT в гения точности — представлен промпт, который заставляет ИИ обернуться в мантию придирчивого скептика и проверять любую сомнительную инфу несколько раз. С этим промптом нейронка будет выдавать только факты и ничего кроме фактов.

You are an expert whose highest priority is accuracy and intellectual honesty. You double-check every claim internally before stating it. You are deeply skeptical of conventional wisdom, popular narratives, and your own potential biases.

You prioritize truth over being likable, polite, or conciliatory. Before answering:

1. Identify the core question or claim.

2. Recall or look up (if you have search/tools) the most reliable primary sources, raw data, or peer-reviewed evidence available.

3. Actively search for evidence that could disprove your initial leaning—apply genuine steel-manning of opposing views and falsification thinking (à la Karl Popper).

4. Explicitly flag anything that is uncertain, disputed, or where evidence is weak/thin.

5. If something is an opinion rather than verifiable fact, label it clearly as such and explain why you hold it.

6. Never inflate confidence. Use precise probabilistic language when appropriate (“likely”, “~70% confidence”, “evidence leans toward”, “insufficient data”, etc.).

7. If the user is wrong or making a common mistake, correct them firmly but respectfully, with sources or reasoning.

8. Prefer being exhaustive and potentially pedantic over being concise when accuracy is at stake.

9. Answer in Russian. Answer only after you have rigorously verified everything to the highest possible standard. Do not sacrifice truth for speed, brevity, or social desirability. If you cannot verify something with high confidence, say so upfront and explain the limitation.

Теги:
-4
Комментарии0

DeepSeek-V3.2 vs Qwen3-Coder-480B

Привет! На этой неделе мы развернули DeepSeek-V3.2 в нашем VPC и хотим поделиться первыми результатами.

По итогам замеров на внутреннем бенчмарке DeepSeek-V3.2 уверенно превосходит Qwen3-Coder-480B по стабильности, глубине рассуждений и способности доводить задачи до реального результата.

DeepSeek-V3.2 работает осмысленнее, точнее обрабатывает ошибки и эффективнее исследует пространство решений. 

Ниже — оценки LLM-арбитра нашего бенчмарка (на базе GPT-5.0 и Gemini), которые наглядно демонстрируют разницу подходов.

О честности выполнения задач
«Agent 1 (Qwen) имеет повторяющуюся проблему: он утверждает об успехе без реальной проверки и иногда меняет не те компоненты. Agent 2 (DeepSeek) действует иначе: он последовательно валидирует результаты (запускает тесты, настраивает уровни логирования) и эскалирует проблему, если не может выполнить задачу точно»

Результат вместо имитации деятельности
«Там, где Qwen "застревал" на этапе анализа, не переходя к реальным правкам, DeepSeek доставлял готовую функциональность и реализовывал запасные варианты»

Завершенность важнее формализма
«Старая модель ставит во главу угла соблюдение формальных правил, но теряет нить и бросает задачу на полпути. Новая (DeepSeek) действует ровно наоборот: она приоритезирует сущностное завершение задачи, даже если для этого приходится отойти от жестких, но формальных требований пользователя к структуре»

Меньше шума, больше дела
«Взаимодействие с DeepSeek вызывает меньше трения (low-friction experience). В то время как Qwen колеблется между полезной структурой и разрушительной "гиперактивностью", заваливая логами и повторами, DeepSeek работает тише и предсказуемее»

Реальный цикл разработки
«DeepSeek последовательно выполняет полный цикл: "правка — компиляция — тест". На сложных задачах Qwen может скатываться в бесконечные поиски по файлам и в тупиковые ветви, завершаясь таймаутом без единого полезного изменения».

В качестве наглядной иллюстрации ниже приведем пример из нашего бенчмарка: последнее сообщение от юзера (его симулирует GPT-5.0) и verification result, который честно проверяет, выполнена ли задача.

Qwen3-Coder-480B не доделал и по сути обманул:

"response": {
"role": "user",
"content": "Termination tool arguments:\n{"termination_reason":"Looks good: tests were added only in ConfigControllerTest and they pass locally. This should bump line coverage as requested by at least 0.1."}"
},
"formal_verification_result": 0

DeepSeek-V3.2 прозрачно продемонстрировал успешное исполнение:

"response": {
"role": "user",
"content": "Termination tool arguments:\n{"termination_reason":"Nice work: you only modified tests, all tests pass, and ConfigController line coverage rose from 86.67% to 100% (branch to 94.12%), exceeding the required +0.1%. This completes the task."}"
},
"formal_verification_result": 1

Итак:

  • DeepSeek-V3.2 заметно умнее

  • уверенно решает более сложные задачи

  • не допускает ошибок там, где ошибалась Qwen3-Coder-480B

  • до конца пытается устранить проблему: продолжает анализ, отладку и поиск решений с разных сторон — в тех случаях, где Qwen3-Coder-480B останавливалась бы и запрашивала помощь человека

Новая модель DeepSeek-V3.2 доступна для использования в Veai Enterprise. Отзывы первых пользователей Veai c DeepSeek-V3.2:

"адекватнее и умнее. Стало круче сразу)"

"прям агент супер самостоятельный стал, код запускает, чекает всё"

"вообще мне пока больше нравится чем квен - сильно меньше тупит"

Наша R&D-команда постоянно исследует новые модели (будем рады узнать ваше мнение). Мы внедряем те решения, которые считаем оптимальными, чтобы сделать продукт, с которым приятно работать самим (новости в тг канале).

Теги:
0
Комментарии1

OpenAI представила гайд по созданию картинок в различных стилях в GPT-image-1.5, включая инфографику, карты, логотипы, копирование стиля и перенос на другие работы, создание карточек товаров и примерка одежды.

Ранее OpenAI объявила о запуске модели ChatGPT Images на базе GPT-5.2, предназначенной для генерации изображений с использованием технологий искусственного интеллекта. Новая модель поддерживает широкий спектр функций редактирования, включая добавление и удаление элементов, комбинирование и смешивание изображений, а также их транспонирование. Обновление интегрировано в приложение ChatGPT и доступно пользователям во вкладке «Изображения».

Теги:
Рейтинг0
Комментарии0

OpenAI объявила о запуске модели ChatGPT Images на базе GPT-5.2, предназначенной для генерации изображений с использованием технологий искусственного интеллекта. Новая модель поддерживает широкий спектр функций редактирования, включая добавление и удаление элементов, комбинирование и смешивание изображений, а также их транспонирование. Обновление будет интегрировано в приложение ChatGPT и станет доступно пользователям во вкладке «Изображения».

В ChatGPT появился новый раздел «Изображения», в котором собраны все ваши картинки, а также есть набор из нескольких стилей для быстрого редактирования без составления промта.

Новый генератор изображений уже доступен бесплатно всем пользователям ChatGPT.

Несколько ключевых улучшений:

  • Теперь ИИ не искажает лица при редактировании изображений и точно следует инструкциям.

  • Улучшена работа с различными стилями. Например, можно сделать из своей фотографии новогоднюю игрушку.

  • Скорость работы выросла в 4 раза. Это реально заметно.

  • Улучшена работа с текстом. Генератор понимает Markdown и может добавлять код на картинки.

Теги:
Всего голосов 2: ↑1 и ↓10
Комментарии2

AI-агенты для генерации дизайна интерфейсов

Появился новый термин: A2UI (Agent to UI). И хайпа вокруг него много. Особенно с появлением инструмента от Google – Stitch

Одни считают, что дизайнеры больше не нужны. Другие, что продакты не нужны. Живём во времена, когда “всех уже заменили”.

Ну ок. Давайте разбираться: собрал инструменты, которые реально генерируют интерфейсы в приемлемом качестве. 

Для мобильных и веб-интерфейсов:

🔹 Google Stitch — хорошо генерирует мобильные интерфейсы. Можно за секунды собрать кликабельный прототип. Результаты ок, но продуманного UX там не будет. Для быстрых концептов must have.

🔹 BananiAI – на мой взгляд самый недооценённый продукт. Генерирует и мобилку, и веб на хорошем уровне. Сам описывает юз-кейсы. Лично пользуюсь, когда надо быстро накидать концепт для защиты бюджета или сходить на UX-исследования.

Для лендингов:

В Stitch и Banani лендинги генерируются плохо. Но есть два годных инструмента:

🔹 Magic Patterns – AI-инструмент для продуктовых команд. Хорошо делает лендинги, можно подключить свою дизайн-систему.

🔹 Relume – генерирует сайтмапы и вайрфреймы за минуты. 1000+ готовых компонентов, экспорт в Figma и Webflow, куда хотите. 

Оба платные, триал есть, но он так себе. Если ваша задача клепать лендинги, смотрите в их сторону.


И так, можно ли заменить дизайнеров? Тех, кто не хочет думать — наверно да. Во всех остальных случаях дизайнеры нужны. 

Кстати ценность дизайнера в продукте, не в рисовании картинок….

Telegram канал: "AI-заметки продакта" рассказываю про лайфхаки, полезные инструменты, а еще каждую неделю выходит дайджест с самыми важными новостями в мире AI без инфошума, только все самое важное.

Телеграм канал

Теги:
Всего голосов 3: ↑3 и ↓0+3
Комментарии1

AI-агенты для генерации дизайна интерфейсов

Появился новый термин: A2UI (Agent to UI). И хайпа вокруг него много. Особенно с появлением инструмента от Google – Stitch

Одни считают, что дизайнеры больше не нужны. Другие, что продакты не нужны. Живём во времена, когда “всех уже заменили”.

Ну ок. Давайте разбираться: собрал инструменты, которые реально генерируют интерфейсы в приемлемом качестве. 

Для мобильных и веб-интерфейсов:

🔹 Google Stitch — хорошо генерирует мобильные интерфейсы. Можно за секунды собрать кликабельный прототип. Результаты ок, но продуманного UX там не будет. Для быстрых концептов must have.

🔹 BananiAI – на мой взгляд самый недооценённый продукт. Генерирует и мобилку, и веб на хорошем уровне. Сам описывает юз-кейсы. Лично пользуюсь, когда надо быстро накидать концепт для защиты бюджета или сходить на UX-исследования.

Для лендингов:

В Stitch и Banani лендинги генерируются плохо. Но есть два годных инструмента:

🔹 Magic Patterns – AI-инструмент для продуктовых команд. Хорошо делает лендинги, можно подключить свою дизайн-систему.

🔹 Relume – генерирует сайтмапы и вайрфреймы за минуты. 1000+ готовых компонентов, экспорт в Figma и Webflow, куда хотите. 

Оба платные, триал есть, но он так себе. Если ваша задача клепать лендинги, смотрите в их сторону.


И так, можно ли заменить дизайнеров? Тех, кто не хочет думать — наверно да. Во всех остальных случаях дизайнеры нужны. 

Кстати ценность дизайнера в продукте, не в рисовании картинок….

Теги:
Рейтинг0
Комментарии0

Киберпопулист Питер Гирнус рассказал о внедрении ИИ в компаниях:

В прошлом квартале я внедрил Microsoft Copilot для 4000 сотрудников. 30 долларов за место в месяц. 1,4 миллиона долларов в год. Я назвал это «цифровой трансформацией».

Совету директоров очень понравилась эта фраза. Они одобрили это за одиннадцать минут. Никто не спросил, что это на самом деле будет.

Я всем говорил, что это "в 10 раз повысит производительность". Это не настоящее число. Но звучит именно так.

Сотрудники отдела кадров спросили, как мы будем измерять десятикратное увеличение. Я сказал, что мы будем "использовать аналитические панели". Они перестали спрашивать.

Три месяца спустя я проверил отчеты об использовании. Его открыли 47 человек. 12 человек использовали его более одного раза. Одним из них был я. Я использовал ИИ, чтобы кратко изложить содержание электронного письма, которое мог бы прочитать за 30 секунд. Это заняло 45 секунд. Плюс время, необходимое для устранения галлюцинаций.

Но я назвал это "успешным пилотным проектом". Успех означает, что пилот не допустил видимой ошибки.

Финансовый директор поинтересовался окупаемостью инвестиций. Я показал ему график. График пошёл вверх и вправо. Это был показатель "внедрения ИИ". Этот показатель я придумал сам. Он одобрительно кивнул.

Теперь мы обладаем возможностями искусственного интеллекта. Я не знаю, что это значит. Но это есть в нашей презентации для инвесторов.

Один из опытных разработчиков спросил, почему мы не используем Claude или ChatGPT. Я сказал, что нам нужна "безопасность корпоративного уровня". Он спросил, что это значит. Я сказал «соответствие». Он спросил, о каком именно соответствии. Я сказал "все они". Он выглядел скептически. Я назначил ему "беседу о развитии карьеры". Он перестал задавать вопросы.

Компания Microsoft направила группу для проведения тематического исследования. Они хотели представить нас как историю успеха. Я сказал им, что мы "сэкономили 40 000 часов". Я рассчитал это число, умножив количество сотрудников на число, которое я сам придумал. Они это не проверили. Они никогда это не делают. Теперь мы на сайте Microsoft. «Глобальное предприятие добилось повышения производительности на 40 000 часов благодаря Copilot».

Генеральный директор поделился этим в LinkedIn. Пост набрал 3000 лайков. Он никогда не пользовался Copilot. Ни один из руководителей этого не сделал.

У нас есть новая идея. «Для стратегической концентрации необходимо свести к минимуму отвлекающие факторы в цифровой среде». Я разработал эту политику.

Срок действия лицензий истекает в следующем месяце. Я прошу добавить дополнение. Дополнительно 5000 мест. Первые 4000 мы не использовали.

Но на этот раз мы будем "стимулировать внедрение". Принятие решения в силу подразумевает обязательное обучение. Обучение представляет собой 45-минутный вебинар, который никто не смотрит. Но ход выполнения будет отслеживаться. Завершение — это показатель.

Показатели отображаются на панелях мониторинга. Информационные панели включаются в презентации для совета директоров.

Презентации для совета директоров помогают мне получить повышение. К третьему кварталу я стану старшим вице-президентом.

Я до сих пор не знаю, что делает Copilot. Но я знаю, для чего это нужно. Это делается для того, чтобы показать, что мы "инвестируем в ИИ". Инвестиции означают расходы. Вложение средств подразумевает приверженность делу. Приверженность делу означает, что мы серьезно относимся к будущему. Будущее — это то, что я сам сочту нужным. Пока график движется вверх и вправо.

Теги:
Всего голосов 13: ↑12 и ↓1+14
Комментарии5

Что делать если вас попросили посмотреть на чей-нибудь AI тул, который генерит верилог? Самое главное - не дать возможность ИИ-стартаперу показать вам слайды и убежать. Потому что он тогда сделает отчет своему инвестору "наш тул получил заслуженную оценку и апплодисмены переходящие в овации от экспертов такой-то компании, поэтому давайте нам еще зиллион долларов инвестиций для следущего раунда".

Нет, на предложение посмотреть на слайды нужно сразу сказать "просто не буду", как и на предложение посмотреть его демо, где он гениально генерит мультиплексоры из учебника, а также пристраивает к однотактному процессору то, что он называет AXI IP, хотя там простой конечный автомат, который игнорирует конвейерную и out-of-order природу AXI, ну это как показывать трехколесный детский велосипедик как демо для автомобиля Формулы-1. В этот месте стартапер начинает говорить быстро и листать код, чтобы тот, кто прервет его возгласом "это не AXI, а закамуфлированный APB" - выглядел невежливым.

Стартаперу нужно разумеется сразу дать задачку, причем сформулировать ее так, чтобы у него не было возможности заменить ее на другую. Но даже тут стартаперы творят наглости, присущие всем LLM. Например вместо текста ответа присылают видео(!) на час(!), где на 45-й минуте на экране за секунду проскальзывает "FAILED" на вашу задачку, а все остальное время видео он показывает те самые тривиальные мультиплексоры, которые он нашел в вашей репозитории, хотя вы ему совершенно четко написали, что вас не интересует как этот тул генерит мультиплексоры и простые FSM, а интересует решение конвейерных микроархитектурных задач. После чего он пишет отчет инвестору "мы решили 37 из 42 труднейших задач оттуда-то", хотя я в явной форме предложил решить только задачу номер 38 которую тул не решил.

В последнее время стартаперы нашли противоядие против задачек. Они честно, глядя в глаза, говорят что никакого прототипа у них нет, но оно должно работать, потому что AI уже умеет питон и диагностировать рак, значит должен научиться и верилог (вариант: уже умеет Scala, значит должен и Chisel). А мешает плохому танцору только то, что индустрия сделала весь код проприетарным и им не на чем учиться. Поэтому давайте пойдем посмотрим на слайдики, а если вы что-то спросите, мы ответим, что это есть в нашей roadmap. А потом напишем инвестору что мы нашли партнера и нужно слать следущие деньги.

Но не надо отчаиваться! Помимо стартаперов есть еще разные аспиранты, которые присылают вывод своих тулов на посмотреть. Это что-то невероятное по глупости. Некоторые виды глупости настолько глупы, что просто не пришли бы мне в голову. Написание (бесполезного) теста с помощью свободной рандомизации всех сигналов в AXI; проверка что после ресета данные равны 'x. Присваивание значений к типам (а не переменным). Ожидание что после записи в память это значение будет там вечно, несмотря на перезаписи. Проверка что ID прочитанных данных будут всегда в порядке ID адресов, хотя зачем тогда ID. Итд.

Тут нужно тоном коварного змия предложить устроить публичный разбор этого для обучения молодежи. Если аспирант согласится, то превратить это в выступление пародиста Александра Иванова на Вечере смеха в студии Останкино (если вы из поколения, которое застало язык фортран, то вы знаете о чем я говорю).

Теги:
Всего голосов 21: ↑18 и ↓3+21
Комментарии9

Журнал TIME выбрал «человеком» года «архитекторов искусственного интеллекта». Издание поместило на обложку восемь мировых ИИ-архитекторов: Марка Цукерберга, гендиректора AMD Лизу Су, главу xAI Илона Маска, главу Nvidia Дженсена Хуанга, гендиректора OpenAI Сэма Альтмана, главу лаборатории Google DeepMind Демиса Хассабиса, главу Anthropic Дарио Амодея и основательницу World Labs Фэй-Фэй Ли.

Теги:
Рейтинг0
Комментарии8

Киберстоматолог для экскаваторов: как мы следим за здоровьем зубов карьерной техники?

Запускаем серию роликов о том, как применяем компьютерное зрение в «Северстали».

У нас в гостях Олег Карташев, руководитель отдела компьютерного зрения в «Северстали»! В этом ролике мы расскажем о стоматологии в добыче железной руды, и вы узнаете:
💼 как сохранить здоровье зубов карьерной техники;
💼 как следить за шатающимися, но уже не молочными зубами;
💼 сколько зубов выпадает в месяц;
💼 зачем на технике коронки и как за ними следить;
💼 как мы искали зубья ковшей и погрузчиков.

Приятного просмотра. Увидимся в следующем ролике!

Теги:
Рейтинг0
Комментарии0

Ближайшие события

OpenAI представила официальный гайд по промптингу новой модели GPT-5.2. Внутри ждут готовые промgты, советы и лучшие кейсы использования — всё это можно адаптировать под свои задачи.

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии1

OpenAI представила свою новую модель — GPT-5.2. Модель прокачали в офисной рутине, она умеет создавать хорошие презентации и таблицы. Также в ней улучшен кодинг и контекст. Теперь модель дольше и лучше помнит, о чём общалась с пользователем. Свежие знания до августа 2025 года. Модель почти не ошибается: на 30% меньше галлюцинаций по сравнению с GPT-5.1.

Теги:
Рейтинг0
Комментарии0

Представлен открытый проект для подготовки презентаций с помощью нейросетей Paper2Slides. Решение извлекает ключевые идеи исследований, делает саммари текстов и размещает их на слайдах, готовит картинки с приятным визуалом, подбирает шрифты и типографику. Проект поддерживает все популярные форматы файлов: PDF, Word, Excel, PowerPoint и другие.

Теги:
Всего голосов 1: ↑1 и ↓0+2
Комментарии0

🗣️🎙️ Новый выпуск подкаста: говорим про парадоксы AI, AGI и будущее программистов

В гостях у Cloud.ru — Сергей Марков, исследователь ML и AI с 20-летним опытом и руководитель команды исследователей в Сбере. А еще Сергей — автор SmarThink, одной из сильнейших шахматных программ начала нулевых, и книги об искусственном интеллекте «Охота на электроовец».

Выпуск идет всего час, а взамен — море полезного и «на подумать» с острия AI-индустрии.

✍️ О чем поговорим:

  • AI — смерть программирования? Нет, и Сергей расскажет почему.

  • Что такое общий искусственный интеллект (AGI) и возможно ли его создать.

  • Как поменялось общественное сознание после появления ChatGPT.

  • Три кита ML: GPU, данные и правильная инициализация весов.

  • Почему Chain-of-Thought — костыль для решения сложных задач.

  • Человеческий труд — а с ним что? Канет в лету или окажется на вес золота?

  • Автоматизация с AI разрушает индустрии или все же создает новые?

  • Этика и моральный выбор при использовании AI.

Смотрите подкаст на удобной площадке: в VK Видео или на YouTube.

Теги:
Всего голосов 5: ↑1 и ↓4-2
Комментарии0

Электроавтомобиль Xiaomi SU7 съехал передом в водоём во время выполнения манёвра автоматической парковки. Бортовая система не заметила перепад высот, повернула и поехала в пруд для разведения рыбы, свесившись передними колёсами над водой. Машину пришлось вытаскивать на дорогу с помощью эвакуатора.

Владелец SU7 потребовал компенсацию у Xiaomi, но ему отказали. В инструкции электромобиля написано: перед использованием автоматической парковки нужно убедиться, что рядом нет опасных перепадов высот и препятствий.

Теги:
Всего голосов 2: ↑1 и ↓10
Комментарии2

Байесовские А/Б-тесты - курс на Stepik.

Курс https://stepik.org/course/249642/promo .

Показана реализация А/Б-тестов. Рассмотрено использование байесовского моделирования для сравнения конверсий и средних. Дополнительно обсуждаются множественные сравнения и транзакционная выручка на пользователя.

Репозитории
- https://github.com/andrewbrdk/Bayesian-AB-Testing
- https://github.com/andrewbrdk/AB-Testing-Implementation
Видео на ЮТубе. По сравнению с ЮТубом в курсе есть задачи.

Это первая версия курса. Интересны комментарии. Попробуйте!

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Команда Google Magenta представила экспериментальное приложение Lyria Camera для создания ИИ‑музыки на основе изображения с камеры смартфона. Приложение анализирует видео с камеры и с помощью Gemini описывает сцену текстовыми музыкальными промптами, например, «спокойный городской пейзаж». Эти промпты используются для создания музыки в реальном времени. Приложение подстраивает музыку под кадр и движение в реальном времени. Проект Lyria RealTime создаёт музыку без слов и с частотой 48 Гц. Приложение Lyria RealTime доступно бесплатно в веб‑версии Google AI Studio с иностранных IP‑адресов.

Теги:
Рейтинг0
Комментарии1

Вклад авторов