Инженеры из Unitree показали собственную систему телеуправления роботами. В отличие от большинства подобных систем она позволяет управлять всем телом, а не только верхней частью робота.
Выглядит систему удалённого управления роботом как довольно лёгкий экзоскелет, который цепляется оператору поверх одежды. Кроме аппаратного захвата движений, компания экспериментируют с повторением движений прямо с видео, в реальном времени с минимальной задержкой. При обучении моделей из видео можно получать огромное количество данных для обучения базовой модели, которую потом будут тюнить на данных с полноценных систем телеуправления.
Чат-бот ChatGPT составил 6 фундаментальных правил, с которыми вы доживёте до 100+ лет. Забудьте про еду и постоянные походы к врачам. Единственная действительно важная причина долголетия — отсутствие стресса.
1. Делайте только то, что не вызывает внутреннего сопротивления. Тошнит от работы, но вы терпите — минус 10 лет жизни. Нелюбимые отношения — ещё десятка. Среда должна быть максимально комфортной, но придётся сделать серьёзный выбор в жизни.
2. Живите сейчас и никогда не откладывайте на потом. На пенсии вы будете дряхлым стариком без сил. 43% людей умирают в течение 5 лет после выхода на пенсию.
3. Социальные связи — база. Одинокие люди чаще пьют и курят. Снова же банальная статистика: люди с крепкими друзьями живут на 50% дольше. Вам не нужна толпа вокруг, главное — качество людей.
4. Вам нужна цель больше, чем вы сами. В Японии это называют «икигай» — ваша причина просыпаться по утрам. Люди с икигай живут на 7 лет дольше. Хватит гоняться за несбыточным — выберите простое, но достижимое.
5. Никакой оптимизации здоровья. ЗОЖники живут меньше из-за своей одержимости. Снова же, одержимость — стресс, а он убивает. Проще говоря, не надо считать каждую калорию.
6. Спите, когда хотите спать. У реальных долгожителей нет четкого расписания. Хочется прикорнуть днём на полчаса — спите. Хватит терпеть до вечера — 10 минут на разгрузку можно найти всегда.
Простые разметки поддаются! А вот сложные — ещё не до конца. Но артефакты размышлений могут сильно помочь и ускорить проверяющего. Например, если нужно вручную искать какие-то факты, ходить по сайтам и т.д.
В начале решения задачи можно подобрать первый промт с отличным качеством, а дальше становится тяжело. В этот момент начинается бесконечный разбор случаев — и почти сразу модель начинает теряться.
ЛЛМ часто решает некоторые типы задач очень хорошо, а другие — плохо или рандомно (например, если не может сходить в интернет за нужной информацией). В итоге получается среднее качество. → Оставляем только то, в чём она сильна!
Привыкание! Помните о нём: вначале метрики могут упасть, но если есть профит, потом всё отрастёт обратно. Сравнивайте с прошлым.
Среднее время разметки задания — это не среднее арифметическое скоростей, а среднее гармоническое! (Особенно важно при малом количестве асессоров.)
Ризонинг у модели хороший, но ответ может быть неверным. Использовать его как подсказку тоже сложно — нет структуры ответа, аспекты постоянно разные. → Просим отвечать структурно и на конкретные вопросы — так и галлюцинации проще проверять, и пользоваться удобнее.
Разметчику должно быть просто и понятно, как пользоваться подсказкой!
Лучший формат подсказок (если устроены: «что проверяли?» → «вердикт») — сверху только найденные проблемы. Иначе есть соблазн раньше времени всё одобрить.
Иногда лучше вообще не давать подсказку! Например, ЛЛМ не может проверить работоспособность калькулятора — и будет только смущать.
Экспериментируйте с моделями! DeepSeek пишет чересчур подробно, а YandexGPT — наоборот, коротко и по делу.
Качество меряем на ядре асессоров, потому что:
на них проще повлиять для прироста качества;
медленные участники часто отваливаются.
Итог: ЛЛМ пока не справляется со сложными инструкциями (особенно когда ответ неоднозначен), но там, где результат можно однозначно определить, — заметно ускоряет и упрощает процесс.
Потихоньку начинаю писать в @noisetosignal — идёмте вместе!
Ещё в прошлом году Apple представил Apple Intelligence, а в этом улучшил их, также добавив новые сценарии работы.
Однако, русский язык не поддерживается, поэтому есть два варианта: используешь старую Siri и не имеешь доступа к старым функциям, либо меняешь весь интерфейс на английский и придется добавлять в Shortcuts команды, чтобы, например, позвонить кому-то, кто записан по-русски(диктовка на русском у английской Siri почти отсутствует).
Сегодня я решил проверить, а насколько реально модели Apple плохо или хорошо понимают русскую речь, если на английском они работают хорошо. Вначале думал потребуются инъекции, однако всё оказалось проще - в приложении Команды нет запрета на русском писать сразу моделям.
Тестировал Cloud версию и On-device, ChatGPT это ChatGPT-4 от OpenAI, у него все хорошо.
Cloud версия работает с русским так себе: она может плохо ответить на высказывания "Привет" - "Да вам привет!", но на более сложные запросы, например, "Расскажи, что такое NP-полные задачи" начнет иногда галлюцинировать и ошибаться в падежах(но не часто), но в целом ответы даже лучше, чем при простых вопросах("Дана граф", не "за", а "в", "задача можно полиноминальном времени преобраовать")
Многие считают, что on-device это просто урезанная cloud, скорее всего так и есть, но урезание получилось не в пользу русского - модель выдаёт сплошные галлюцинации, ошибается через слово в падежах и даже на запрос "Привет" ответит "Я не могу прогнозировать будущее", используйте для генерации всякой чепухи.
На "Как дела?" обе отправляли на сайт Apple, вероятно, это системный промпт(https://www.youtube.com/watch?v=gTOIMdH4-bE), в котором написано, что ты не имеешь эмоций и т.п.
По итогу это ограничение разумно, пока такое лучше не показывать всем, кто знает русский, но Cloud версию, я думаю, скоро можно будет использовать. Можете проверить сами(для этого смените, хотя бы на время, язык системы и Siri с русского на английский).
Модель искусственного интеллекта с открытым исходным кодом для оценки риска рака молочной железы
FRA-RIG-breast, экспериментально исследовательская модель, построенная на основе Фрактально Референциальной Архитектуры (FRA) — фреймворка, который интерпретирует данные с помощью моделей различий, а не изолированных признаков.
Модель делит входные параметры на три концептуальных блока:
R — особенности морфологической структуры и размера,
I — текстура, симметрия и фрактальные свойства тканей,
G — геометрическая компактность, кривизна и агрессивность.
Каждый блок генерирует свой собственный внутренний индекс (S_R, S_I, S_G), а конечная вероятность вычисляется с помощью логистической регрессии.
Такая структура делает модель объяснимой — она показывает, почему был сделан прогноз, а не только каков результат.
Ключевые результаты
Средние показатели перекрестной проверки:
Точность — 0,967
ROC-AUC — 0,989
PR-AUC — 0,990
F1-оценка — 0,973
Порог классификации (Youden) = 0,64
Модель сохраняет точность на 96-98% при сгибании и демонстрирует высокую стабильность между запусками.
Цель состоит в том, чтобы продемонстрировать прозрачный, поддающийся интерпретации искусственный интеллект для онкологических исследований — без сложного глубокого обучения.
FRA-RIG-breast может быть распространен на другие области, такие как исследования крови, легких или кожи, где понимание влияния факторов так же важно, как и само прогнозирование риска.
Лицензия: MIT бесплатная для использования в научных исследованиях и образовательных целях.
❗️ Это экспериментальная модель, а не медицинский диагностический инструмент.
Если вы работаете в области онкологии, биоинформатики или обработки данных и хотите узнать, как подход FRA может быть адаптирован к вашему подтипу рака, не стесняйтесь обращаться .
Буду рад обсудить, как можно было бы точно настроить параметры R, I и G для вашего исследовательского контекста. Безвозмездно.
Как Shared GPU позволяет дешевле разворачивать ML- и DL-модели в облаке ☁️⚙️
Shared GPU — технология, которая позволяет вместо аренды целой видеокарты арендовать ее часть. Это удобно для запуска небольших моделей: так, если вам нужно только 12 ГБ, вы арендуете именно их, а не платите за все 80 ГБ. А еще вы сможете перераспрелять ресурсы GPU в зависимости от нагрузки и не платить, когда нет запросов.
❓ Как все это работает
Shared GPU делит ресурсы видеокарты на несколько подов, и каждая модель запускается на отдельном. Благодаря этому можно развернуть несколько небольших моделей на одной GPU, а не арендовать для каждой отдельную видеокарту и платить за ресурсы, которые будут простаивать.
Контейнеры, на которых размещены модели, изолированы друг от друга. Если с одним из них что-то произойдет, сервисы на других подах продолжать не упадут.
🚀 Преимущества, которые дает Shared GPU:
Автомасштабирование и скейлинг в ноль. Если запросов много, дополнительные мощности выделятся автоматически. А если запросов нет дольше установленного времени, контейнер с моделью ставятся на паузу, и тарификация прекращается.
Pay-as-you-go. Платите только за те мощности, которые используете, а не за целую GPU или время простоя.
Рациональное использование мощностей. Для каждого проекта не нужно закупать отдельную GPU. Если ресурсы временно не используются, их можно перераспределить на другие задачи.
Гибкая настройка и масштабируемость. Есть возможность менять количество выделенных на каждый под ресурсов, перераспределять их в зависимости от нагрузки, развертывать несколько моделей на одной видеокарте.
OpenAI заплатит $38 млрд Amazon Web Services за доступ к сотням тысяч графических процессоров Nvidia Corp. в рамках семилетнего соглашения. По версии Bloomberg, для OpenAI это подтверждение перехода в статус «гиганта ИИ».
Учёные сравнили ChatGPT с психологическими профилями людей из 65 стран и выяснили, что модели ИИ мыслят на 70% ближе к американцам, чем к остальному миру. По данным World Values Survey, мышление ИИ оказалось ближе всего к США, Великобритании, Канаде и странам Западной Европы, а дальше всего от Эфиопии, Пакистана и Кыргызстана.
Команда Datalab выпустила бесплатную OCR модель Chandra, которая превращает любые PDF и картинки в обычные текстовые документы. Просто закидываем файл и получаем вывод в формате HTML, Markdown и JSON. Легко вытаскивает таблицы, формулы и диаграммы. Понимает 40+ языков. Можно пользоваться в браузере или поставить локально. Ставим локально с GitHub или пользуемся онлайн — здесь.
Бесплатную учебную базу по ML выдал Гарвардский университет в новой книге. Авторы сделали акцент на инженерии и построении правильных нейронок с нудя.. В книге 2500 страниц, включая строительство, оптимизацию и поддержку ML-решений на всех этапах: от подбора и подготовки данных до продакшена и использования. Авторы объясняют, как правильно связать алгоритмы, данные и железо, чтобы ИИ выдержал даже высокие нагрузки и стабильно помогал в любых задачах. Онлайн-учебник, репозиторий проекта.
Горящие новости Evolution Foundation Models: модели, тарифы и акции 🔥
Попробуйте бесплатно 20+ LLM, реранкеров и эмбеддеров в Evolution Foundation Modelsдо 1 ноября, а затем используйте их по цене 35 рублей за миллион входных и 70 рублей за миллион выходных токенов.
А еще выбирайте модели из расширенного списка, ведь недавно мы добавили:
GigaChat 2 MAX — самую мощную LLM линейки GigaChat, которая обошла GPT-4o и Claude 2 в тесте MMLU-RU.
Qwen3-Next-80B-A3B-Instruct, которая сочетает высокоскоростные блоки для длинных последовательностей и точные attention-слои, а также использует спарсовую архитектуру Mixture of Experts с 512 экспертам.
GLM-4.6 с высокой производительностью при написании кода в Cline, Roo Code и Kilo Code.
Whisper large-v3 — продвинутую модель от OpenAI для распознавания речи. Модель не надо дообучать, а еще ее можно использовать в коммерческих целях — она распространяется под свободной лицензией Apache-2.0.
MiniMax-M2 — компактную, но мощную модель для работы с кодом и агентами. №1 среди open source моделей в бенчмарке Artificial Analysis, которая умеет планировать цепочки действий, работать с окружением, извлекать данные и работать с внешними инструментами.
Для использования моделей не нужно писать код или развертывать инференс, все уже готово к подключению через API.
Если вы работаете с ML-моделями и сталкивались с батч-обработкой данных, то знаете, насколько муторно бывает тестировать такие процессы вручную. А если автоматизировать этот повторяющийся хаос? В статье «Как автоматизировать тестирование батч-моделей? Гайд» рассказываем, как превратить рутину в предсказуемый и управляемый процесс.
Статья будет полезна не только специалистам по автоматизации процессов тестирования, а и ML-инженерам, MLOps-специалистам и командам разработки, занимающимся поддержкой продакшн-систем машинного обучения.
После прочтения вы точно перестанете выполнять повторяющиеся из раза в раз тесты для батч моделей вручную — потому что поймёте, что можно проще. Автоматизация начинается с малого, но экономит часы ручного тестирования.
Вице-президент Google выпустил бесплатную интерактивную книгу про интеллект, включая искусственный. «What Is Intelligence?: Lessons from AI About Evolution, Computing, and Minds». Автор Блейз Агуэра-и-Аркас на пальцах объясняет, как работает ваш мозг и как в нём двигаются шестерёнки — это не чудо, а механизм, который можно прокачать. Как мозг «угадывает» следующий шаг и почему это и есть основа интеллекта. Почему эволюция — огромная обучающая система. Чем ИИ на нас похож, а где принципиально другой. Как не путать «интеллект» и «сознание». Чего ждать от развития нейронок и когда нас всех заменят.
Стратегический консалтинг ушёл в ИИ. McKinsey оказались одним из крупнейших пользователей ChatGPT. Идеи от искусственного интеллекта, включая фейковые статьи и факты, продают клиентам за миллионы долларов.
Открытый проект AI Video Transcriber помогает транскрибировать видеоролики в сжатый и отлично написанный текст. Работает просто, вытаскивает текст из любых видео за секунды, а потом корректирует и делает подробное саммари. Решение поддерживает более 30 самых популярных площадок, в том числе YouTube, TikTok, Bilibili и прочие. Проект не просто вытаскивает текст из видео, но делает настоящее эссе: дополняет фразы и реплики, корректирует факты и мысли, редактирует текст и доводит до идеала. Основа — Fast Whisper (лучшая нейронка для транскрибации видео). Может смотреть видео и сразу же выдавать текстовые материалы и уточнения. Сегментирует видео на 20-минутные отрывки и делит их на разделы, чтобы проще было изучать материал.
По информации СМИ, OpenAI хочет показывать в ChatGPT таргетированную рекламу прямо в чат-боте на основе переписок с ИИ. Например, если пользователи говорят о спорте, им предложат спортивную форму или добавки. Контекст ИИ будут юзать, чтобы показывать больше рекламы. Если пользователи отключат рекламу, то лишатся всей памяти чат-бота. Контекста больше не будет, всю работу придётся организовать снова.
На Hugging Face вышел новый инструмент для вайбкодеров. Это среда для создания мощнейших ИИ-агентов openEnv, где можно собирать, подключать, интегрировать, тестировать и масштабировать агентов под свои задачи. Там же можно обучить с подкреплением собственную нейронку. Есть полный комплект для работы: плагины, инструменты, API, контекст и прочее. Результат — автоматизация задач и проектов, целые приложения и сервисы под контролем ИИ, а также системы из связанных ИИ-агентов.
Появление контента, созданного искусственным интеллектом (ИИ), в интернете достигло паритета с материалами, написанными настоящими людьми.
В Axios выяснили, ссылаясь на аналитический отчёт фирмы Graphite, занимающейся поисковой оптимизацией, что доля ИИ-статей на короткое время превзошла человеческую генерацию, но сейчас объёмы выровнялись.
Согласно последним данным, представленным Graphite, в общем объеме новых публикаций в сети доля контента, созданного ИИ, составляет 52%, что незначительно превышает 48% материалов, написанных людьми.
Специалисты Graphite провели анализ 65 тысяч веб-страниц, индексированных с 2020 по 2025 годы. Отмечается, что резкий подъем доли материалов, сгенерированных ИИ, начался в 2023 году, что совпало с выходом на рынок чат-бота ChatGPT в конце 2022 года.
Несмотря на общее увеличение объёмов генерации, результаты поисковой системы Google показывают существенный перекос в пользу человеческого труда. Фирма установила, что 86% статей, которые отображаются в результатах поиска Google, созданы людьми. На долю ИИ приходится лишь 14% такого контента. Более того, когда материалы, созданные искусственным интеллектом, все же попадают в выдачу, они, как правило, располагаются на более низких позициях по сравнению с публикациями, написанными людьми.
В Perplexity обновили инструкцию, как выжать из нейросетей максимум: Perplexity at Work A Guide to Getting More Done. Внутри лучшие промпты, кейсы для работы, креативные идеи, оптимальный воркфлоу и рабочие сценарии тотальной автоматизации любых задач. Гайд работает на любых чат-ботах — хоть ChatGPT, хоть кастомная модель на вашем ПК.