Источник изображения
Сбер выложил русскоязычную модель GPT-3 Large с 760 миллионами параметров в открытый доступ
Источник изображения
Data Scientist
Еще в начале 2018 года вышла статья Deep Reinforcement Learning Doesn't Work Yet ("Обучение с подкреплением пока не работает"). Основная претензия которой сводилась к тому, что современные алгоритмы обучения с подкреплением требуют для решения задачи примерно столько же времени, как и обычный случайный поиск.
Изменилось ли что-то с того времени? Нет.
Обучение с подкреплением считается одним из трех основных путей к созданию сильного ИИ. Но трудности, с которыми сталкивается эта область машинного обучения, и методы, которыми ученые пытаются бороться с этими трудностями, наводят на мысль что, возможно, с самим этим подходом имеются фундаментальные проблемы.
*фарм — (от англ. farming) — долгое и занудное повторение определенных игровых действий с определенной целью (получение опыта, добыча ресурсов и др.).
Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, "войти" в DS). И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Если вы зададите этот вопрос на любом профильном форуме, то ответ, скорее всего, будет один — иди решай Kaggle. Kaggle — это да, но с чего начать и как наиболее эффективно использовать эту платформу для прокачки практических навыков? В данной статье автор постарается на своем опыте дать ответы на эти вопросы, а также описать расположение основных грабель на поле соревновательного DS, чтобы ускорить процесс прокачки и получать от этого фан.
Оказывается для этого достаточно запуcтить всего лишь такой набор команд:
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
wget http://dumps.wikimedia.org/ruwiki/latest/ruwiki-latest-pages-articles.xml.bz2
python3 WikiExtractor.py -o ../data/wiki/ --no-templates --processes 8 ../data/ruwiki-latest-pages-articles.xml.bz2
и потом немного отполировать скриптом для пост-процессинга
python3 process_wikipedia.py
Результат — готовый .csv
файл с вашим корпусом.
pip
или apt-get
. Но что если необходимо собрать проект из исходников и подключиться к GPU? Оказывается, это может быть не настолько просто, что я выяснил в ходе сборки SSD-Caffe. В этой публикации я дам краткое описание Colaboratory, опишу встреченные трудности и способы их решения, а также приведу несколько полезных приемов.urllib2
является библиотека requests
. Подробнее на Хабре: "Библиотека для упрощения HTTP-запросов".python-telegram-bot
. Пока на Хабре эта библиотека не упоминалась.Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.