Как стать автором
Обновить
0
0
Никита Овсов @FunnyHouse

Data Scientist

Отправить сообщение

Сбер выложил русскоязычную модель GPT-3 Large с 760 миллионами параметров в открытый доступ

Время на прочтение10 мин
Количество просмотров175K
Последнее десятилетие в области компьютерных технологий ознаменовалось началом новой «весны искусственного интеллекта». Впрочем, ситуацию в индустрии в наши дни можно, наверное, охарактеризовать уже не как весну, а полноценное «лето ИИ». Судите сами, за последние неполные 10 лет только в области обработки естественного языка (Natural language processing, NLP) произошли уже две настоящие технологические революции. Появившаяся в результате второй из них модель GPT-3 произвела настоящий фурор не только в технологических медиа, но стала знаменитой далеко за пределами научного сообщества. Например, GPT-3 написала для издания «The Guardian» эссе о том, почему ИИ не угрожает людям. GPT-3 сочиняет стихи и прозу, выполняет переводы, ведёт диалоги, даёт ответы на вопросы, хотя никогда специально не училась выполнять эти задачи. До недавних пор все возможности GPT-3 могли по достоинству оценить лишь англоязычные пользователи. Мы в Сбере решили исправить эту досадную оплошность. И сейчас расскажем вам, что из этого получилось.


Источник изображения
Читать дальше →
Всего голосов 119: ↑114 и ↓5+155
Комментарии241

Подготовка к собеседованиям в IT-гиганты: как я преодолела проклятье алгоритмического собеседования

Время на прочтение12 мин
Количество просмотров206K

Дисклеймер:


Я не программирую с трёх лет, не знаю наизусть Кнута, не являюсь призёром олимпиад по информатике и чемпионатов по спортивному программированию, не училась в MIT. У меня за плечами образование по информатике и 6 лет опыта в коммерческой разработке. И до недавнего времени я не могла пройти дальше первого технического скрининга в IT-гиганты из FAANG (Facebook, Amazon, Apple, Netflix, Google и подобные), хотя предпринимала несколько попыток. 

Но теперь всё изменилось, я получила несколько офферов и хочу поделиться опытом, как можно к этому прийти. Речь пойдёт о позиции Software Engineer в европейских офисах перечисленных компаний.
Читать дальше →
Всего голосов 155: ↑150 и ↓5+191
Комментарии342

Что не так с обучением с подкреплением (Reinforcement Learning)?

Время на прочтение21 мин
Количество просмотров55K


Еще в начале 2018 года вышла статья Deep Reinforcement Learning Doesn't Work Yet ("Обучение с подкреплением пока не работает"). Основная претензия которой сводилась к тому, что современные алгоритмы обучения с подкреплением требуют для решения задачи примерно столько же времени, как и обычный случайный поиск.


Изменилось ли что-то с того времени? Нет.


Обучение с подкреплением считается одним из трех основных путей к созданию сильного ИИ. Но трудности, с которыми сталкивается эта область машинного обучения, и методы, которыми ученые пытаются бороться с этими трудностями, наводят на мысль что, возможно, с самим этим подходом имеются фундаментальные проблемы.

Читать дальше →
Всего голосов 75: ↑72 и ↓3+69
Комментарии46

Устойчивость обучения GAN (Копаем глубже)

Время на прочтение8 мин
Количество просмотров4.4K
image

В предыдущей статье на примере игрушечных моделей я попытался проанализировать почему же, собственно, у нас получается достаточно эффективно обучать GAN’ы. Сейчас же мы попробуем обобщить некоторые результаты и, самое главное, попробуем проанализировать как влияет архитектура нейронных сетей на устойчивость процесса обучения.
Читать дальше →
Всего голосов 15: ↑15 и ↓0+15
Комментарии1

This content is not available in your country: новости, которые вы не сможете узнать из России

Время на прочтение5 мин
Количество просмотров24K
Один из самых простых способов заблокировать ту или иную информацию (читай — тот или иной ресурс) — это запрет доступа к нему по географическому признаку.



Сама блокировка может быть связана с самыми разными причинами — если это медиасервис, то чаще всего это вопросы с лицензиями в разных странах. Если это информационный портал, то здесь многое зависит от содержания и политической направленности.

Ну и, наконец, любимые торрент-трекеры.

Но в этом посте мы будем говорить не столько о самих причинах блокировок, сколько о списке ресурсов, которые недоступны с российских айпишников.
Читать дальше →
Всего голосов 28: ↑22 и ↓6+16
Комментарии23

Курс о Deep Learning на пальцах

Время на прочтение2 мин
Количество просмотров174K
Я все еще не до конца понял, как так получилось, но в прошлом году я слово за слово подписался прочитать курс по Deep Learning и вот, на удивление, прочитал. Обещал — выкладываю!

Курс не претендует на полноту, скорее это способ поиграться руками с основными областями, где deep learning устоялся как практический инструмент, и получить достаточную базу, чтобы свободно читать и понимать современные статьи.

Материалы курса были опробованы на студентах кафедры АФТИ Новосибирского Государственного Университета, поэтому есть шанс, что по ним действительно можно чему-то научиться.


Читать дальше →
Всего голосов 117: ↑117 и ↓0+117
Комментарии31

Радар технологий: перечень языков, инструментов и платформ, которые прошли через руки Lamoda

Время на прочтение12 мин
Количество просмотров24K
В комментариях к нашей прошлой статье было много вопросов о технологиях, которые мы используем. В этой статье я — Игорь Мосягин, R&D разработчик Lamoda — о них расскажу. Под катом вы найдёте исчерпывающий перечень языков, инструментов, платформ и технологий, которые прошли через наши руки. Фронтенд, бэкенд, БД, брокеры сообщений, кеши и мониторинг, разработка и балансировка — подробный рассказ о том, что мы используем сегодня, а от чего отказались.



Я и мои коллеги готовы подискутировать в комментариях или на стенде компании на HighLoad++ 2018.
Читать дальше →
Всего голосов 46: ↑42 и ↓4+38
Комментарии17

Как участвовать в соревнованиях по машинному обучению. Лекция в Яндексе

Время на прочтение12 мин
Количество просмотров13K
Многие из постоянных посетителей ML-тренировок придерживаются обоснованного мнения, что участие в конкурсах — самый быстрый способ попасть в профессию. У нас даже была статья на эту тему. Автор сегодняшней лекции Артур Кузин на собственном примере показал, как можно за пару лет переквалифицироваться из сферы, вообще не связанной с программированием, в специалиста по анализу данных.


— Всем привет. Меня зовут Артур Кузин, я lead data scientist компании Dbrain.
Всего голосов 19: ↑19 и ↓0+19
Комментарии0

Как правильно «фармить» Kaggle

Время на прочтение27 мин
Количество просмотров158K

image
*фарм — (от англ. farming) — долгое и занудное повторение определенных игровых действий с определенной целью (получение опыта, добыча ресурсов и др.).


Введение


Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, "войти" в DS). И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Если вы зададите этот вопрос на любом профильном форуме, то ответ, скорее всего, будет один — иди решай Kaggle. Kaggle — это да, но с чего начать и как наиболее эффективно использовать эту платформу для прокачки практических навыков? В данной статье автор постарается на своем опыте дать ответы на эти вопросы, а также описать расположение основных грабель на поле соревновательного DS, чтобы ускорить процесс прокачки и получать от этого фан.

проверить глубину этой кроличьей норы
Всего голосов 87: ↑86 и ↓1+85
Комментарии15

Парсим Википедию для задач NLP в 4 команды

Время на прочтение3 мин
Количество просмотров11K

Суть


Оказывается для этого достаточно запуcтить всего лишь такой набор команд:


git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
wget http://dumps.wikimedia.org/ruwiki/latest/ruwiki-latest-pages-articles.xml.bz2
python3 WikiExtractor.py -o ../data/wiki/ --no-templates --processes 8 ../data/ruwiki-latest-pages-articles.xml.bz2

и потом немного отполировать скриптом для пост-процессинга


python3 process_wikipedia.py

Результат — готовый .csv файл с вашим корпусом.

Читать дальше →
Всего голосов 17: ↑13 и ↓4+9
Комментарии2

Делаем проект по машинному обучению на Python. Часть 1

Время на прочтение13 мин
Количество просмотров91K


Перевод A Complete Machine Learning Project Walk-Through in Python: Part One.

Когда читаешь книгу или слушаешь учебный курс про анализ данных, нередко возникает чувство, что перед тобой какие-то отдельные части картины, которые никак не складываются воедино. Вас может пугать перспектива сделать следующий шаг и целиком решить какую-то задачу с помощью машинного обучения, но с помощью этой серии статей вы обретёте уверенность в способности решить любую задачу в сфере data science.

Чтобы у вас в голове наконец сложилась цельная картина, мы предлагаем разобрать от начала до конца проект применения машинного обучения с использованием реальных данных.
Читать дальше →
Всего голосов 24: ↑21 и ↓3+18
Комментарии4

Сборка Caffe в Google Colaboratory: бесплатная видеокарта в облаке

Время на прочтение7 мин
Количество просмотров23K
Google Colaboratory — это не так давно появившийся облачный сервис, направленный на упрощение исследований в области машинного и глубокого обучения. Используя Colaboratory, можно получить удаленный доступ к машине с подключенной видеокартой, причем совершенно бесплатно, что сильно упрощает жизнь, когда приходится обучать глубокие нейросети. Можно сказать, что она является некоторым аналогом гугл-документов для Jupyter Notebook.

В Colaboratory предустановлены Tensorflow и практически все необходимые для работы Python-библиотеки. Если какой-то пакет отсутствует, он с легкостью устанавливается на ходу через pip или apt-get. Но что если необходимо собрать проект из исходников и подключиться к GPU? Оказывается, это может быть не настолько просто, что я выяснил в ходе сборки SSD-Caffe. В этой публикации я дам краткое описание Colaboratory, опишу встреченные трудности и способы их решения, а также приведу несколько полезных приемов.

Весь код доступен в моем Colaboratory Notebook.

Читать дальше →
Всего голосов 12: ↑11 и ↓1+10
Комментарии3

Как можно упростить себе жизнь с помощью Telegram-бота

Время на прочтение13 мин
Количество просмотров73K

О чём эта статья?


Эта статья — краткий рассказ о том, как с помощью подручных средств (Firefox) и Python можно осуществить успешную интеграцию Telegram-бота и внешнего сервиса.

Материал будет интересен тем, кто наслышан о Telegram'ных ботах, но не знает, как к ним подступиться и какие задачи с их помощью можно решать. Предполагается знание Python.

Картинка для привлечения внимания:

writing a twitter bot
(ссылка на оригинал)

TL;DR


Из статьи вы узнаете:

1. Как с помощью браузера узнать, какой запрос отправляется на сервер при клике по кнопке?

Ответ
Используя web tool вашего любимого браузера можно увидеть все запросы, которые отправляются из открытой страницы на сервер.


2. Как легко отправить запрос на сервер с помощью Python?

Ответ
Удобной обёрткой над стандартным модулем urllib2 является библиотека requests. Подробнее на Хабре: "Библиотека для упрощения HTTP-запросов".


3. Как написать бота на Python?

Ответ
Полнофункциональная обёртка реализована в библиотеке python-telegram-bot. Пока на Хабре эта библиотека не упоминалась.

Читать дальше →
Всего голосов 30: ↑27 и ↓3+24
Комментарии8

Let's fix NAs

Время на прочтение5 мин
Количество просмотров7.2K
Довольно часто встречаются неполные наборы данных, в которых некоторые переменные не определены. В языке R содержимое таких переменных задается как «Not Available» — или сокращенно NA. Соответственно, возникает вопрос, как поступать с неопределенными значениям: стоит ли их игнорировать или откорректировать каким-либо образом?
Читать дальше →
Всего голосов 15: ↑14 и ↓1+13
Комментарии2

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 2

Время на прочтение8 мин
Количество просмотров40K


Публикуем вторую часть статьи о типах архитектуры нейронных сетей. Вот первая.

За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.

Читать дальше →
Всего голосов 42: ↑39 и ↓3+36
Комментарии2

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 1

Время на прочтение10 мин
Количество просмотров94K


Это первая часть, вот вторая.
За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.
Читать дальше →
Всего голосов 51: ↑50 и ↓1+49
Комментарии14

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров1.1M


Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.

Читать дальше →
Всего голосов 44: ↑43 и ↓1+42
Комментарии61

Что мы знаем о ландшафте функции потерь в машинном обучении?

Время на прочтение18 мин
Количество просмотров14K

TL;DR


  1. В глубоких нейронных сетях основным препятствием для обучения являются седловые точки, а не локальные минимумы, как считалось ранее.
  2. Большинство локальных минимумов целевой функции сконцентрированы в сравнительно небольшом подпространстве весов. Соответствующие этим минимумам сети дают примерно одинаковый loss на тестовом датасете.
  3. Сложность ландшафта увеличивается по приближении к глобальным минимумам. Почти во всём объёме пространства весов подавляющая часть седловых точек имеет большое количество направлений, по которым из них можно сбежать. Чем ближе к центру кластера минимумов, тем меньше «направлений побега» у встреченных на пути седловых точек.
  4. Всё ещё неясно, как найти в подпространстве минимумов глобальный экстремум (любой из них). Похоже, что это очень сложно; и не факт, что типичный глобальный минимум намного лучше типичного локального, как в плане loss'a, так и в плане обобщающей способности.
  5. В сгустках минимумов существуют особые кривые, соединяющие локальные минимумы. Функция потерь на этих кривых принимает лишь чуть большие значения, чем в самих экстремумах.
  6. Некоторые исследователи считают, что широкие минимумы (с большим радиусом «ямы» вокруг) лучше узких. Но есть и немало учёных, которые полагают, что связь ширины минимума с обобщающей способностью сети очень слаба.
  7. Skip connections делают ландшафт более дружелюбным для градиентного спуска. Похоже, что вообще нет причин не использовать residual learning.
  8. Чем шире слои в сети и чем их меньше (до определённого предела), тем глаже ландшафт целевой функции. Увы, чем более избыточна параметризация сети, тем больше нейросеть подвержена переобучению. Если использовать сверхширокие слои, то несложно найти глобальный минимум на тренировочном наборе данных, но обобщать такая сеть не будет.

Всё, листайте дальше. Я даже КДПВ ставить не буду.
Мне нужны пруфы!
Всего голосов 23: ↑22 и ↓1+21
Комментарии22

R и Spark

Время на прочтение8 мин
Количество просмотров10K
imageSpark – проект Apache, предназначенный для кластерных вычислений, представляет собой быструю и универсальную среду для обработки данных, в том числе и для машинного обучения. Spark также имеет API и для R(пакет SparkR), который входит в сам дистрибутив Spark. Но, помимо работы с данным API, имеется еще два альтернативных способа работы со Spark в R. Итого, мы имеем три различных способа взаимодействия с кластером Spark. В данном посте приводиться обзор основных возможностей каждого из способов, а также, используя один из вариантов, построим простейшую модель машинного обучения на небольшом объеме текстовых файлов (3,5 ГБ, 14 млн. строк) на кластере Spark развернутого в Azure HDInsight.
Читать дальше →
Всего голосов 17: ↑17 и ↓0+17
Комментарии12

Яндекс открывает Алису для всех разработчиков. Платформа Яндекс.Диалоги (бета)

Время на прочтение5 мин
Количество просмотров111K
Сегодня мы начинаем открытое бета-тестирование платформы Яндекс.Диалоги, с помощью которой любой разработчик сможет обучить Алису новым навыкам и привлечь пользователей к своим сервисам и разработкам. В этом посте мы не будем пересказывать всю документацию, но дадим общее представление о работе платформы на примере самой популярной игры для Алисы.



Голосовой помощник Алиса, о котором мы впервые рассказывали на Хабре осенью прошлого года, уже работает в приложении Яндекс, Яндекс.Браузере, а также в бета-версии для Windows. Каждый день миллионы пользователей этих продуктов решают с помощью голосового помощника определённые задачи – например, узнают прогноз погоды. Мы регулярно добавляем новые возможности, но охватить все интересы пользователей самостоятельно невозможно. Заполнить этот пробел призваны навыки Алисы, об особенностях создания которых мы и расскажем под катом.

Читать дальше →
Всего голосов 110: ↑105 и ↓5+100
Комментарии157

Информация

В рейтинге
Не участвует
Откуда
Москва, Москва и Московская обл., Россия
Зарегистрирован
Активность