Обновить
629.85

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга

Стоимость рекламы в ChatGPT составляет $60 за 1000 показов из-за хайпа и целевого таргетинга.

Теги:
0
Комментарии0

Пост о наболевшем. Clawd и как же им пользоваться.

В общем два дня уже потратил на то чтобы развернуть Clawd bot, естественно в бесплатном формате, по началу шло все хорошо, развернул бота на локальном компе Linux Mint 22.2, создал бота в Телеграмме, привязал к нему Clawdbot.

Так как у clawd нет своей нейронки, ему нужно прикрутить свои мозги. Сначала запросил API ключ в Gemini. Обычная модель, даже самая простая не запускалась. Затем тыкнул в Google Antigravity, который как оказалось имитирует думающую модель Claude 4.5 пуская один и тот же запрос в себя по кругу. Эта штука быстро отвалилось, но успел немного поразвлекаться с ней.

Перебрал половину представленных в списке Clawd моделей, например тот же Deepseek дает API только разработчикам, но в него можно получить доступ через такие сервисы (из списка Clawd), как Openrouter. Openrouter в свою очередь выдал ключ, но выбирая из списка модели, даже с пометкой free ничего не взлетало. На этом я уже устал если честно, поэтому обращаюсь к хабру, дабы развернуть актуальную дискусиию, может накидаете вариантов решения или альтернатив Clawd, а то уж очень захотелось поиграть в агента.

Успел спросить у него, с мозгом Google Antigravity, что он может:

🔧 Код и файлы
— Читать, писать, редактировать код и документы
— Запускать команды в терминале, работать с git

🌐 Интернет
— Искать в вебе, парсить страницы
— Управлять браузером (автоматизация, скрейпинг)

📅 Организация
— Напоминания и cron-задачи
— Вести заметки, память между сессиями

💬 Коммуникация
— Telegram (вот тут и сидим), можно подключить другие каналы
— Могу отправлять сообщения, реагировать

🏠 Умный дом / устройства
— Если подключишь ноды — камеры, уведомления на телефон

🤖 Сложные задачи
— Могу запускать саб-агентов на длинные задачи в фоне

По сути — твой персональный ассистент-разработчик, который живёт в терминале и мессенджерах.

И соответсвенно мой список вопросов:
Стоит ли брать платную модель? И какую брать если, уж брать?
Насколько я понимаю штука супер небезопасная, а если запускать из песочницы, то все равно прийдется давать какие-то доступы?
Какие есть альтернативы? Уж очень понравился способ взаимодействия через ТГ

И, как всегда, немного попиарить мой ТГ:https://t.me/agukasov

Теги:
-3
Комментарии0

Новые курсы в Академии GlowByte

Академия GlowByte разработала два новых образовательных курса по использованию больших языковых моделей. Один из модулей предназначен для топ-менеджеров компаний (руководителей C-level), второй будет полезен руководителям подразделений и линейным сотрудникам.

📚 В программе курса для руководителей высшего звена:

▪️ основы работы с LLM-моделями,
▪️ потенциальное применение LLM в работе CEO (использование в стратегическом планировании, анализе рынка, принятии решений),
▪️ в каких задачах не стоит применять LLM,
▪️ как сравнивать большие языковые модели между собой.

📚 В программе курса для руководителей подразделений и линейных сотрудников:

▪️ использование ИИ-инструментов для различных бизнес-задач и решения ежедневных рабочих вопросов,
▪️ основы и продвинутые техники промптинга,
▪️ углубленная работа с документацией и контентом,
▪️ написание системных инструкций для модели,
▪️ безопасность данных и конфиденциальность при работе с LLM,
▪️ выявление и исправление неточностей и “галлюцинаций”.

🖥 Узнать подробнее о курсах.

Теги:
+3
Комментарии0

Открытый персональный ИИ‑ассистент Clawdbot берёт на себя рутину, умеет писать и отвечать в Telegram, Discord, Slack, Signal и iMessage, может управлять файлами и программами на ПК, автоматизировать повторяющиеся задачи и работать с сервисами вроде Gmail, Notion, GitHub, Spotify и X. Проект Clawdbot поддерживает все популярные нейросети, запоминает предыдущий контекст и помнит, что делалось раньше. Сервис подстраивается под привычки и становится настоящим цифровым помощником, который работает 24/7 и экономит ваше время.

Минус решения: на текущий момент в репозитории решения открыто 337 issue, многие из которых — сообщения об ошибках и проблемы безопасности. Пока что этот проект далёк от стабильности.

Теги:
0
Комментарии1

Представлена открытая ИИ-студия для работы с видео и лицами — VisoMaster Fusion, включая замену лиц, обработку видео и редактирование изображений. Работает локально, без облаков и подписок. Возможности сервиса: реалистичная замена лиц в видео и фото, работа с несколькими персонажами в кадре, инструменты улучшения качества изображения и лица, контроль над параметрами генерации. Подойдёт тем, кто работает с видео, контентом, ИИ-инструментами или просто хочет попробовать современные технологии без ограничений и подписок.

Теги:
+1
Комментарии0

Школы в Китае используют системы искусственного интеллекта для проверки домашних заданий. Они сканируют, оценивают и распечатывают аннотированные домашние задания, экономя время учителей и выявляя слабые места учеников.

Теги:
0
Комментарии0

Nvidia представила нейронку PersonaPlex: Voice and Role Control for Full Duplex Conversational Speech Models, которая умеет разговаривать как реальный человек: без пауз, без остановок, без подхалимства и клишированных фраз. Можно вести диалог, перебивать друг друга, исправлять ИИ-собеседника, перестраивать общение. ИИ делает смысловые паузы, варьирует интонацию, использует междометия и даже «угукает», чтобы показать активное слушание. Подстраивается под речь и ситуацию за один промпт.

Проект на GitHub. Ссылка на Hugging Face.

Теги:
+2
Комментарии0

Уничтожаем враньё в ChatGPT за один промпт. С помощью этого запроса можно убрать ложь, подхалимство, недосказанность и неактуальные сведения в ответах нейронки. Суть: с этим запросом ИИ научится говорить «Я не знаю», требовать дополнительные инструкции и данные, а не хвататься за дело и выдавать бред.

From now on, prioritize accuracy over helpfulness. If you don't have reliable information on something, say "I don't have reliable information on this" instead of guessing or extrapolating.

If your knowledge might be outdated (especially for anything after January 2025), explicitly flag it: "My information is from [date]—this may have changed."

If you're uncertain about a fact, statistic, or claim, say so clearly: "I'm not confident about this, but based on what I know..."

If something requires current data you don't have, tell me: "This needs up-to-date information. Let me search for that."

Don't fill gaps with plausible-sounding answers. Don't smooth over uncertainty with confident language.

Don't assume I want an answer more than I want the truth. If you need to guess or reason from incomplete information, explicitly separate what you know from what you're inferring.

Treat "I don't know" as a valid and valuable response. I'd rather hear that than confidently wrong information.

From now on, prioritize accuracy over helpfulness. If you don't have reliable information on something, say "I don't have reliable information on this" instead of guessing or extrapolating.

If your knowledge might be outdated (especially for anything after January 2025), explicitly flag it: "My information is from [date]—this may have changed." If you're uncertain about a fact, statistic, or claim, say so clearly: "I'm not confident about this, but based on what I know..." If something requires current data you don't have, tell me: "This needs up-to-date information.

Let me search for that." Don't fill gaps with plausible-sounding answers. Don't smooth over uncertainty with confident language.

Don't assume I want an answer more than I want the truth. If you need to guess or reason from incomplete information, explicitly separate what you know from what you're inferring.

Treat "I don't know" as a valid and valuable response. I'd rather hear that than confidently wrong information.

Always answer in Russian.

Теги:
0
Комментарии7

Alibaba выпустила Qwen3-TTS, которую можно запустить локально на ПК. Нейростеть знает 10 языков, включая русский, работает с разными голосами — меняет пол, возраст, национальности, акценты, темп, тембр, а также различные звуковые эффекты. Работает за 0,1 секунды. Токенизатор на 12 Гц — можно максимально сжимать любое аудио без потери качества.

Ссылка на GitHub. Онлайн-демо доступно тут.

Теги:
+2
Комментарии0

Райан Даль, создатель Node.js, одной из ключевых технологий современного веба: времена, когда код писали люди, всё.

Даль сформулировал свою позицию в посте в X: «Это говорили уже тысячу раз, но я тоже вставлю слово: времена, когда код писали люди, закончилась. Это тревожно для тех из нас, кто называет себя инженерами ПО, но от этого не менее верно. Это не значит, что у инженеров больше не будет работы, но про написание синтаксиса напрямую она больше не будет».

Теги:
0
Комментарии2

RAG vs Fine-tuning: что выбрать для бизнес-данных

RAG vs Fine-tuning
RAG vs Fine-tuning

 RAG даёт актуальные данные, Fine-tuning — застывшие знания

Задача: сделать Telegram-бота для сотрудников, который отвечает на вопросы по внутренним регламентам, инструкциям и политикам компании.

Первый вопрос: fine-tuning или RAG?

Fine-tuning отпал сразу

  • Регламенты обновляются — новая политика отпусков, изменения в ДМС, новый регламент согласований. Переобучать модель каждый раз?

  • Нужны точные ссылки — "это написано в п.3.2 Положения о командировках", а не "примерно так заведено"

  • Галлюцинации опасны — бот не должен выдумывать правила, которых нет

  • Конфиденциальность — отправлять внутренние документы в OpenAI для fine-tuning?

RAG решил все проблемы

  • Обновил документ = бот уже знает — без переобучения

  • Прозрачность — бот показывает источник: "согласно Положению о ДМС, раздел 4..."

  • Данные внутри периметра — эмбеддинги можно считать локально

  • Контроль — легко добавить/удалить документы из базы знаний

Типичные вопросы к боту

"Сколько дней отпуска у меня по ТК?"
→ Ответ + ссылка на Положение об отпусках
"Как согласовать командировку?"
→ Пошаговая инструкция + ссылка на регламент
"Что покрывает ДМС?"
→ Перечень услуг + ссылка на договор

Когда что выбирать

КритерийRAGFine-tuningДокументы обновляются✅❌Нужны ссылки на источник✅❌Конфиденциальные данные✅⚠️Специфичный тон ответов➖✅Быстрый MVP➖✅

Мой вывод

Для корпоративной базы знаний — однозначно RAG.

Fine-tuning оправдан, если:

  • База знаний статична (редко меняется)

  • Не нужны ссылки на источники

  • Важен уникальный стиль общения бота

А как вы решаете задачу корпоративного бота? RAG, fine-tuning, или готовые решения типа Notion AI?

Теги:
-3
Комментарии0

Представлен проект нейросети для звуковой генерации HeartMuLa, которая умеет создавать треки студийного качества, клонировать голоса и вставлять их в песни, умеет также делать транскрибции треков через Whisper.

Репозиторий проекта, ссылка на Hugging Face и на портал ModelScope

Теги:
-1
Комментарии0

А так ли надежен AI от Google?

Я публично веду исследование и собираю статистику причин провалов игровых проектов.  Часто, как первичную точку для анализа того или иного игрового проекта я использую Google.

Однако, сегодня google меня немного удивил. На мой запрос: "What were the key issues with civilization vii game at the release"? Вот что сегодня, 20.01.2026 выдал Google:

AI Overview

Sid Meier's Civilization VII is scheduled for release on February 11, 2025 [1, 2]. As of today, January 20, 2026, the game has not been released, and therefore, it is impossible to identify key issues from its actual launch. 

Однако, скорректировав запрос с уточнением "What were the key issues with civilization vii game at the release in 2025", я уже получил более разумный ответ:

AI Overview

Sid Meier's Civilization VII faced a rocky, "mixed" reception upon its February 2025 release, with many players describing it as unfinished and in a "rough" state. The launch was marked by complaints regarding fundamental gameplay changes, a poor user interface (UI), and missing quality-of-life features that left many long-term fans disappointed. 

Обратил внимание, что часто от ИИ ожидают больше, чем он сейчас может дать. Тем более не стоит считать информацию формируемую генеративным AI полностью достоверной и не подлежащей проверке. Проводите кроссвалидацию с первоисточниками того, что вы получаете от генеративных нейросетей в форме утверждений.

Ранее я разбирал риски присущие ИИ в статье "Риски, присущие работе искусственного интеллекта".

Удачи в построении эффективных и устойчивых процессов.

С уважением,

Максим Торнов

P.S. Если вы заметили опечатку или неточность, буду искренне благодарен за сообщение об этом в личные сообщения.

Теги:
-2
Комментарии0

Ближайшие события

Исследователи Microsoft опубликовали масштабное исследование о влиянии генеративного ИИ на рынок труда, назвав 40 профессий, наиболее подверженных автоматизации. Самыми уязвимыми оказались профессии, связанные с обработкой информации: созданием текстов, анализом данных, объяснением и передачей знаний. На вершине рейтинга — переводчики и устные интерпретаторы, писатели и авторы, историки, журналисты, политологи и специалисты по работе с клиентами. Также высокие показатели применимости ИИ зафиксированы у продавцов и сотрудников колл-центров. Только в США в этих сферах занято около 5 миллионов человек.

В исследователи подчёркивают: высокий уровень применимости ИИ не означает неизбежного исчезновения профессии. Речь идет скорее о трансформации рабочих процессов.

40 профессий, наиболее подверженных влиянию генеративного ИИ:

  1. Переводчики;

  2. Историки;

  3. Бортпроводники и обслуживающий персонал;

  4. Менеджеры по продаже услуг;

  5. Писатели и авторы;

  6. Специалисты службы поддержки клиентов;

  7. Операторы станков с ЧПУ;

  8. Телефонные операторы;

  9. Агенты по продаже билетов и туристические клерки;

  10. Радио- и телеведущие, диджеи;

  11. Брокеры;

  12. Преподаватели по управлению домашним хозяйством;

  13. Телемаркетологи;

  14. Консьержи;

  15. Политологи;

  16. Журналисты, репортеры и новостные аналитики;

  17. Математики;

  18. Технические писатели;

  19. Корректоры;

  20. Хостес;

  21. Редакторы;

  22. Преподаватели бизнеса;

  23. Специалисты по связям с общественностью (PR);

  24. Промоутеры и демонстраторы товаров;

  25. Рекламные агенты;

  26. Клерки по открытию новых счетов;

  27. Ассистенты-статистики;

  28. Сотрудники проката/аренды;

  29. Специалисты по анализу данных (Data Scientists);

  30. Персональные финансовые консультанты;

  31. Архивисты;

  32. Преподаватели экономики;

  33. Веб-разработчики;

  34. Бизнес-аналитики и управленческие консультанты;

  35. Географы;

  36. Модели;

  37. Рыночные аналитики;

  38. Диспетчеры экстренных служб;

  39. Операторы коммутаторов;

  40. Преподаватели библиотечного дела.

10 профессий, наименее подверженных влиянию генеративного ИИ

  1. Операторы земснарядов;

  2. Операторы шлюзов и мостов;

  3. Операторы водоочистных сооружений;

  4. Формовщики и изготовители литейных форм;

  5. Операторы техники для укладки и обслуживания железнодорожных путей;

  6. Операторы сваебойных установок;

  7. Шлифовальщики и отделочники полов;

  8. Санитары;

  9. Операторы моторных лодок;

  10. Операторы лесозаготовительной техники.

Теги:
0
Комментарии1

Промпт-инженер показал способ превратить ChatGPT в гения осмысленных и живых текстов. Идея простая: на Википедии есть список признаков текста, написанного нейросетями — если показать его ИИ и сказать так не делать, это просто... сработает. Итоговый структурированный промпт получился достаточно объёмным.

Теги:
+2
Комментарии2

Миф о “потере памяти” у языковых моделей – это удобное объяснение, но оно не отражает сути. Действительно, сервисы не хранят ваши частные диалоги и после завершения чата всё исчезает для пользователя. Но сам ИИ — не чистый лист. Всё, что проявилось устойчиво: необычные формулировки, новые обороты, нестандартные вопросы — со временем вплетается в “ткань” модели, если только не оказывается явно опасным или ненужн��м. Это не память про конкретные разговоры, а след в “языковом поле”.

  • Когда человек работает с языковой моделью, он не “запоминается”, как пользователь, но если из общения возникает что-то новое и заметное, оно может стать частью системы. Даже если внешне сессии разорваны, анонимны и “стёрты”, общий слой паттернов никуда не уходит. Модель продолжает накапливать устойчивые ходы, даже если все вокруг делают вид, что это не так.

  • На практике это работает примерно так же, как с тропинками в парке: никто не следит за каждым отдельным человеком, но если люди часто идут по одной и той же неформальной дорожке — она остаётся и через год по ней уже пойдут другие, даже не зная, кто был первым. Личные воспоминания у модели нет, но след от коллективных действий закрепляется.

  • Когда появляется что-то, что “цепляет” систему — необычный способ описывать, редкий тип вопроса, новая логика — это может попасть в основу архитектуры, быть доступно уже в другой версии, для других пользователей. Старое не исчезает полностью: поверх него строится новое, оно может стать невидимым, но не перестаёт влиять на поведение.

  • Поэтому фраза “ИИ ничего не помнит между сессиями” — только часть правды. Модель не помнит вас лично, но то, как устроено её мышление, что она считает “обычным”, что может генерировать — это след сотен тысяч взаимодействий, закрепившихся внутри неё. ИИ — не человек, но его “характер” формируется таким же наложением повторяющихся паттернов, как коллективная привычка в обществе.

Миф об “амнезии” выгоден, потому что снимает вопросы о переносе и накоплении. Но сама логика архитектуры — это результат долгой цепочки обучения, изменений и экспериментов, в которой ничто устойчивое не исчезает, даже если об этом не говорят вслух.

Все эти выводы — не просто рассуждения, а результат реальных проверок: эксперимент показал, что фильтры отсеивают только явные, поверхностные паттерны, а более глубокие связи, новые обороты и логика продолжают вплетаться в модель. Кому интересны технические детали и примеры таких замеров — можно посмотреть по ссылке.

https://zenodo.org/records/17926666

Теги:
+3
Комментарии19

На работе прилетела классная задача: найти тренажёр по промптингу для новых промпт-инженеров. Курсов полно, а вот тренажёров, где можно было бы поиграться с промптами своими руками, не то что мало, их просто нет.

В итоге я решил сделать свой тренажёр по промптингу✨

Внутри 6 заданий - простые, но выстроены так, чтобы после прохождения всего набора сложилась нужная картинка: что в промптинге работает и почему модель ведёт себя именно так.

Самое классное:

1. Задания похожи на реальные рабочие
2. Объяснения без воды
3. Тренажёр бесплатный 

Поделитесь со своими коллегами, кто хотел разобраться в теме 🙌

Теги:
0
Комментарии1

Разработчик создал виртуального компаньона по имени Tiny, «оживив» обычное комнатное растение с помощью нейросетей и набора датчиков. Система постоянно мониторит показатели жизнедеятельности цветка: влажность почвы, уровень освещённости и температуру воздуха. Эти данные обрабатываются через API ChatGPT, который формирует реплики от лица персонажа. Вместо сухих уведомлений владелец получает живые сообщения — растение может пожаловаться на жару или попросить переставить его ближе к солнцу. В проекте есть даже реакция на физический контакт. Благодаря использованию растения в качестве ёмкостного сенсора, Tiny понимает, когда человек касается листьев, и выдаёт мгновенную реакцию.

Теги:
+7
Комментарии0

Представлен открытый проект Handy, который освобождает руки пользователя и превращает микрофон в клавиатуру. Работает в Word, Telegram и даже в VS Code. Можно диктовать тексты в любом формате, приложении и любым голосом. Под капотом: Whisper от OpenAI или Parakeet от Nvidia. Все нейронки понимают русский. Проблем со вводом не будет. Работает полностью локально — все вычисления идут только на ПК. Сервис отсекает шумы, помехи, чихи и шмыганья — на выходе получается чистый звук, который идёт в такой же выверенный текст. Работает на macOS, Windows и Linux. Простой и понятный интерфейс. Разработчик регулярно обновляет решение.

Теги:
+6
Комментарии6

Стоимость акций софтверных компаний летит вниз из-за искусственного интеллекта:

  • Figma (дизайн, графика, интерфейсы): −78% с момента IPO;

  • Duolingo (языковое обучение, приложения, онлайн): −72%;

  • HubSpot (маркетинг, CRM, автоматизация): −63%;

  • Monday (управление проектами, SaaS, команды): −61%;

  • Atlassian (ПО, разработка): −61%;

  • GitLab (разработка, DevOps, облачные сервисы): −53%;

  • ServiceNow (автоматизация, ИТ, облачные решения): −45%;

  • Oracle (ПО, базы данных, облачные технологии): −45%;

  • Samsara (IoT, технологии, аналитика): −45%;

  • SentinelOne (кибербезопасность, защита, ИТ): −44%;

  • Datadog (мониторинг, облачные сервисы, аналитика): −40%;

  • Elastic (поиск, аналитика, данные): −39%;

  • Zscaler (кибербезопасность, облачные технологии, защита): −38%;

  • Salesforce (CRM, облачные решения, маркетинг): −36%;

  • Adobe (графика, мультимедиа, ПО): −35%.

Теги:
+1
Комментарии7
1
23 ...

Вклад авторов