
Продолжаем серию статей с мягким, но последовательным введением в геометрические алгебры. Она рассчитана на тех, кто хочет разобраться не только с с тем как она работает, но и почему она работает.
В этой части мы рассмотрим алгебры Грассмана или внешние алгебры с несколькими «корнями из нуля», то есть ненулевыми элементами, обращающимися в ноль при возведении в квадрат. Однородные элементы внешней алгебры — мультивекторы или -векторы, имеют геометрическую интерпретацию, которая позволяет рассматривать их как модели линейных пространств. Так строится афинная геометрическая алгебра с операциями пересечения и соединения. Мы рассмотрим двойственные алгебры и порассуждаем над ориентацией и мерой подпространств, соответствующих мультивекторам. Изучим свойства внешнего произведения и его геометрическую интерпретацию, коснёмся принципа двойственности и введём новые операции: два дополнения и регрессивное произведение.