❓100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_2
?Вопрос_2: Объясните, что такое One-hot encoding и Label Encoding. Как они влияют на размерность заданного набора данных ?
✔️Ответ:
One-hot encoding - это представление категориальных переменных в виде двоичных векторов, при котором каждая уникальная категория переменной преобразуется в новый бинарный столбец, называемый "фиктивной переменной". В этом новом столбце значение 1 указывает на принадлежность к соответствующей категории, а значение 0 - на принадлежность к другим категориям. Таким образом, каждая уникальная категория представлена отдельным столбцом. Это позволяет алгоритмам машинного обучения интерпретировать категориальные значения и использовать их в расчетах. Не создает ложного упорядочения или отношения между значениями категориальных переменных и помогает избежать проблемы ложной корреляции между категориями переменных. Однако, использование one-hot encoding увеличивает размерность набора данных ("проклятие размерности").
Label Encoding - это процесс преобразования каждого значения категориальной переменной в целочисленный код. Каждой уникальной категории присваивается уникальное число. Label Encoding не добавляет новые столбцы к набору данных и не увеличивает размерность. Однако, важно понимать, что числовые значения, присвоенные категориям, могут создать ложное упорядочение или отношение между ними.
#work #coding #testing #optimization #ml #learning
Телеграмм: https://t.me/DenoiseLAB