Как ИИ-агенты учатся работать с временными рядами

В мире данных однотипные графики часто выглядят уныло, а работа с ними — еще скучнее: очистка, бесконечные проверки, подбор моделей и объяснения для любопытного начальства. Классические алгоритмы предсказаний временных рядов давно знакомы аналитикам, но когда массив данных огромен, а требования к прозрачности все выше — старые методы начинают давать сбои.
Вместо того чтобы снова изобретать “лучшую” модель, команда исследователей решила взглянуть на задачу по-новому: построить мультиагентную систему, в которой несколько ИИ-агентов делят между собой всю рутину аналитика — от первой чистки до финального отчета. Что они придумали и почему это на самом деле похоже на работу настоящего исследователя? Разбираемся на живом примере из энергетики.